MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem15 Structured version   Visualization version   Unicode version

Theorem 4sqlem15 15663
Description: Lemma for 4sq 15668. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
4sq.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
4sq.a  |-  ( ph  ->  A  e.  ZZ )
4sq.b  |-  ( ph  ->  B  e.  ZZ )
4sq.c  |-  ( ph  ->  C  e.  ZZ )
4sq.d  |-  ( ph  ->  D  e.  ZZ )
4sq.e  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.f  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.g  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.h  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.r  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
4sq.p  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
Assertion
Ref Expression
4sqlem15  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) )  =  0 )  /\  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) )  =  0 ) ) )
Distinct variable groups:    w, n, x, y, z    B, n   
n, E    n, G    n, H    A, n    C, n    D, n    n, F    i, n, M    n, N    P, i, n    ph, n    S, i, n    R, i
Allowed substitution hints:    ph( x, y, z, w, i)    A( x, y, z, w, i)    B( x, y, z, w, i)    C( x, y, z, w, i)    D( x, y, z, w, i)    P( x, y, z, w)    R( x, y, z, w, n)    S( x, y, z, w)    T( x, y, z, w, i, n)    E( x, y, z, w, i)    F( x, y, z, w, i)    G( x, y, z, w, i)    H( x, y, z, w, i)    M( x, y, z, w)    N( x, y, z, w, i)

Proof of Theorem 4sqlem15
StepHypRef Expression
1 4sq.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
2 eluz2nn 11726 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  NN )
31, 2syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  NN )
43nnred 11035 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  RR )
54resqcld 13035 . . . . . . . . . 10  |-  ( ph  ->  ( M ^ 2 )  e.  RR )
65rehalfcld 11279 . . . . . . . . 9  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  RR )
76rehalfcld 11279 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  RR )
87recnd 10068 . . . . . . 7  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  CC )
9 4sq.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
10 4sq.e . . . . . . . . . . . 12  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
119, 3, 104sqlem5 15646 . . . . . . . . . . 11  |-  ( ph  ->  ( E  e.  ZZ  /\  ( ( A  -  E )  /  M
)  e.  ZZ ) )
1211simpld 475 . . . . . . . . . 10  |-  ( ph  ->  E  e.  ZZ )
13 zsqcl 12934 . . . . . . . . . 10  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e.  ZZ )
1412, 13syl 17 . . . . . . . . 9  |-  ( ph  ->  ( E ^ 2 )  e.  ZZ )
1514zred 11482 . . . . . . . 8  |-  ( ph  ->  ( E ^ 2 )  e.  RR )
1615recnd 10068 . . . . . . 7  |-  ( ph  ->  ( E ^ 2 )  e.  CC )
17 4sq.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
18 4sq.f . . . . . . . . . . . 12  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1917, 3, 184sqlem5 15646 . . . . . . . . . . 11  |-  ( ph  ->  ( F  e.  ZZ  /\  ( ( B  -  F )  /  M
)  e.  ZZ ) )
2019simpld 475 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ZZ )
21 zsqcl 12934 . . . . . . . . . 10  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e.  ZZ )
2220, 21syl 17 . . . . . . . . 9  |-  ( ph  ->  ( F ^ 2 )  e.  ZZ )
2322zred 11482 . . . . . . . 8  |-  ( ph  ->  ( F ^ 2 )  e.  RR )
2423recnd 10068 . . . . . . 7  |-  ( ph  ->  ( F ^ 2 )  e.  CC )
258, 8, 16, 24addsub4d 10439 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  +  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( ( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( F ^ 2 ) ) ) )
266recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  CC )
27262halvesd 11278 . . . . . . 7  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  +  ( ( ( M ^
2 )  /  2
)  /  2 ) )  =  ( ( M ^ 2 )  /  2 ) )
2827oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  +  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
2925, 28eqtr3d 2658 . . . . 5  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  +  ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( F ^
2 ) ) )  =  ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) )
3029adantr 481 . . . 4  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( F ^ 2 ) ) )  =  ( ( ( M ^
2 )  /  2
)  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) ) )
315recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  ( M ^ 2 )  e.  CC )
32312halvesd 11278 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  +  ( ( M ^ 2 )  /  2 ) )  =  ( M ^ 2 ) )
3332adantr 481 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  /  2
)  +  ( ( M ^ 2 )  /  2 ) )  =  ( M ^
2 ) )
344recnd 10068 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  CC )
3534sqvald 13005 . . . . . . . . . 10  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
3635adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  =  ( M  x.  M
) )
37 4sq.r . . . . . . . . . . 11  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
38 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  R  =  M )
3937, 38syl5eqr 2670 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  =  M )
4039oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)  x.  M )  =  ( M  x.  M ) )
4115, 23readdcld 10069 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR )
42 4sq.c . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  C  e.  ZZ )
43 4sq.g . . . . . . . . . . . . . . . . . 18  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4442, 3, 434sqlem5 15646 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G  e.  ZZ  /\  ( ( C  -  G )  /  M
)  e.  ZZ ) )
4544simpld 475 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e.  ZZ )
46 zsqcl 12934 . . . . . . . . . . . . . . . 16  |-  ( G  e.  ZZ  ->  ( G ^ 2 )  e.  ZZ )
4745, 46syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G ^ 2 )  e.  ZZ )
4847zred 11482 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( G ^ 2 )  e.  RR )
49 4sq.d . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  D  e.  ZZ )
50 4sq.h . . . . . . . . . . . . . . . . . 18  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
5149, 3, 504sqlem5 15646 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( H  e.  ZZ  /\  ( ( D  -  H )  /  M
)  e.  ZZ ) )
5251simpld 475 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  H  e.  ZZ )
53 zsqcl 12934 . . . . . . . . . . . . . . . 16  |-  ( H  e.  ZZ  ->  ( H ^ 2 )  e.  ZZ )
5452, 53syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( H ^ 2 )  e.  ZZ )
5554zred 11482 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( H ^ 2 )  e.  RR )
5648, 55readdcld 10069 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  RR )
5741, 56readdcld 10069 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR )
5857recnd 10068 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  CC )
593nnne0d 11065 . . . . . . . . . . 11  |-  ( ph  ->  M  =/=  0 )
6058, 34, 59divcan1d 10802 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  x.  M
)  =  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )
6160adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)  x.  M )  =  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) )
6236, 40, 613eqtr2rd 2663 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  =  ( M ^
2 ) )
6333, 62oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  +  ( ( M ^ 2 )  /  2 ) )  -  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )  =  ( ( M ^ 2 )  -  ( M ^ 2 ) ) )
6441recnd 10068 . . . . . . . . 9  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  CC )
6556recnd 10068 . . . . . . . . 9  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  CC )
6626, 26, 64, 65addsub4d 10439 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  +  ( ( M ^
2 )  /  2
) )  -  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) )  =  ( ( ( ( M ^
2 )  /  2
)  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  +  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) ) )
6766adantr 481 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  +  ( ( M ^ 2 )  /  2 ) )  -  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )  =  ( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  +  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) ) ) )
6831subidd 10380 . . . . . . . 8  |-  ( ph  ->  ( ( M ^
2 )  -  ( M ^ 2 ) )  =  0 )
6968adantr 481 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  (
( M ^ 2 )  -  ( M ^ 2 ) )  =  0 )
7063, 67, 693eqtr3d 2664 . . . . . 6  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  +  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )  =  0 )
716, 41resubcld 10458 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  e.  RR )
729, 3, 104sqlem7 15648 . . . . . . . . . . 11  |-  ( ph  ->  ( E ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
7317, 3, 184sqlem7 15648 . . . . . . . . . . 11  |-  ( ph  ->  ( F ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
7415, 23, 7, 7, 72, 73le2addd 10646 . . . . . . . . . 10  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
7574, 27breqtrd 4679 . . . . . . . . 9  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
766, 41subge0d 10617 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  (
( ( M ^
2 )  /  2
)  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  <-> 
( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) ) )
7775, 76mpbird 247 . . . . . . . 8  |-  ( ph  ->  0  <_  ( (
( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
786, 56resubcld 10458 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR )
7942, 3, 434sqlem7 15648 . . . . . . . . . . 11  |-  ( ph  ->  ( G ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
8049, 3, 504sqlem7 15648 . . . . . . . . . . 11  |-  ( ph  ->  ( H ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
8148, 55, 7, 7, 79, 80le2addd 10646 . . . . . . . . . 10  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
8281, 27breqtrd 4679 . . . . . . . . 9  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
836, 56subge0d 10617 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  (
( ( M ^
2 )  /  2
)  -  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  <-> 
( ( G ^
2 )  +  ( H ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) ) )
8482, 83mpbird 247 . . . . . . . 8  |-  ( ph  ->  0  <_  ( (
( M ^ 2 )  /  2 )  -  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )
85 add20 10540 . . . . . . . 8  |-  ( ( ( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) )  e.  RR  /\  0  <_  ( (
( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )  /\  ( ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR  /\  0  <_ 
( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) ) ) )  -> 
( ( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  +  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) ) )  =  0  <-> 
( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) )  =  0  /\  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  =  0 ) ) )
8671, 77, 78, 84, 85syl22anc 1327 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  +  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) ) )  =  0  <-> 
( ( ( ( M ^ 2 )  /  2 )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) )  =  0  /\  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  =  0 ) ) )
8786biimpa 501 . . . . . 6  |-  ( (
ph  /\  ( (
( ( M ^
2 )  /  2
)  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  +  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) )  =  0 )  ->  (
( ( ( M ^ 2 )  / 
2 )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  0  /\  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  =  0 ) )
8870, 87syldan 487 . . . . 5  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  0  /\  ( ( ( M ^ 2 )  / 
2 )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  =  0 ) )
8988simpld 475 . . . 4  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  /  2
)  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  =  0 )
9030, 89eqtrd 2656 . . 3  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( F ^ 2 ) ) )  =  0 )
917, 15resubcld 10458 . . . . 5  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  e.  RR )
927, 15subge0d 10617 . . . . . 6  |-  ( ph  ->  ( 0  <_  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  <-> 
( E ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) ) )
9372, 92mpbird 247 . . . . 5  |-  ( ph  ->  0  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  -  ( E ^
2 ) ) )
947, 23resubcld 10458 . . . . 5  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) )  e.  RR )
957, 23subge0d 10617 . . . . . 6  |-  ( ph  ->  ( 0  <_  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  <-> 
( F ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) ) )
9673, 95mpbird 247 . . . . 5  |-  ( ph  ->  0  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  -  ( F ^
2 ) ) )
97 add20 10540 . . . . 5  |-  ( ( ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  e.  RR  /\  0  <_  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) ) )  /\  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) )  e.  RR  /\  0  <_  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) ) ) )  ->  (
( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  +  ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( F ^
2 ) ) )  =  0  <->  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 ) ) )
9891, 93, 94, 96, 97syl22anc 1327 . . . 4  |-  ( ph  ->  ( ( ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( E ^
2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) ) )  =  0  <->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 ) ) )
9998biimpa 501 . . 3  |-  ( (
ph  /\  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( F ^ 2 ) ) )  =  0 )  ->  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 ) )
10090, 99syldan 487 . 2  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 ) )
10148recnd 10068 . . . . . . 7  |-  ( ph  ->  ( G ^ 2 )  e.  CC )
10255recnd 10068 . . . . . . 7  |-  ( ph  ->  ( H ^ 2 )  e.  CC )
1038, 8, 101, 102addsub4d 10439 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  +  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  =  ( ( ( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( H ^ 2 ) ) ) )
10427oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  +  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  =  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )
105103, 104eqtr3d 2658 . . . . 5  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  +  ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( H ^
2 ) ) )  =  ( ( ( M ^ 2 )  /  2 )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) )
106105adantr 481 . . . 4  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( H ^ 2 ) ) )  =  ( ( ( M ^
2 )  /  2
)  -  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) )
10788simprd 479 . . . 4  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  /  2
)  -  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  =  0 )
108106, 107eqtrd 2656 . . 3  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( H ^ 2 ) ) )  =  0 )
1097, 48resubcld 10458 . . . . 5  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  e.  RR )
1107, 48subge0d 10617 . . . . . 6  |-  ( ph  ->  ( 0  <_  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  <-> 
( G ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) ) )
11179, 110mpbird 247 . . . . 5  |-  ( ph  ->  0  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  -  ( G ^
2 ) ) )
1127, 55resubcld 10458 . . . . 5  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) )  e.  RR )
1137, 55subge0d 10617 . . . . . 6  |-  ( ph  ->  ( 0  <_  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  <-> 
( H ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) ) )
11480, 113mpbird 247 . . . . 5  |-  ( ph  ->  0  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  -  ( H ^
2 ) ) )
115 add20 10540 . . . . 5  |-  ( ( ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  e.  RR  /\  0  <_  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) ) )  /\  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) )  e.  RR  /\  0  <_  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) ) ) )  ->  (
( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  +  ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( H ^
2 ) ) )  =  0  <->  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 ) ) )
116109, 111, 112, 114, 115syl22anc 1327 . . . 4  |-  ( ph  ->  ( ( ( ( ( ( M ^
2 )  /  2
)  /  2 )  -  ( G ^
2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) ) )  =  0  <->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 ) ) )
117116biimpa 501 . . 3  |-  ( (
ph  /\  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  +  ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( H ^ 2 ) ) )  =  0 )  ->  ( (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 ) )
118108, 117syldan 487 . 2  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 ) )
119100, 118jca 554 1  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) )  =  0 )  /\  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) )  =  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    mod cmo 12668   ^cexp 12860   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  4sqlem16  15664
  Copyright terms: Public domain W3C validator