Proof of Theorem binomcxplemwb
Step | Hyp | Ref
| Expression |
1 | | binomcxplem.c |
. . . . . 6
   |
2 | | binomcxplem.k |
. . . . . . 7
   |
3 | 2 | nncnd 11036 |
. . . . . 6
   |
4 | 1, 3 | npcand 10396 |
. . . . 5
       |
5 | 4 | oveq1d 6665 |
. . . 4
       FallFac     FallFac     |
6 | 1, 3 | subcld 10392 |
. . . . 5
     |
7 | 2 | nnnn0d 11351 |
. . . . . 6
   |
8 | | fallfaccl 14747 |
. . . . . 6
 
  FallFac
   |
9 | 1, 7, 8 | syl2anc 693 |
. . . . 5
  FallFac
   |
10 | 6, 3, 9 | adddird 10065 |
. . . 4
       FallFac        FallFac
    FallFac      |
11 | 5, 10 | eqtr3d 2658 |
. . 3
   FallFac        FallFac
    FallFac      |
12 | 11 | oveq1d 6665 |
. 2
   
FallFac              FallFac     FallFac           |
13 | 1, 7 | bccval 38537 |
. . . 4
  C𝑐   FallFac
        |
14 | 13 | oveq2d 6666 |
. . 3
   C𝑐     FallFac
         |
15 | | faccl 13070 |
. . . . . 6

      |
16 | 15 | nncnd 11036 |
. . . . 5

      |
17 | 7, 16 | syl 17 |
. . . 4
       |
18 | | facne0 13073 |
. . . . 5

      |
19 | 7, 18 | syl 17 |
. . . 4
       |
20 | 1, 9, 17, 19 | divassd 10836 |
. . 3
   
FallFac           FallFac
         |
21 | 14, 20 | eqtr4d 2659 |
. 2
   C𝑐    
FallFac          |
22 | 6, 9, 17, 19 | divassd 10836 |
. . . 4
      FallFac
            FallFac          |
23 | 22 | oveq1d 6665 |
. . 3
       FallFac           FallFac               FallFac           FallFac           |
24 | 6, 9 | mulcld 10060 |
. . . 4
     FallFac     |
25 | 3, 9 | mulcld 10060 |
. . . 4
   FallFac     |
26 | 24, 25, 17, 19 | divdird 10839 |
. . 3
       FallFac     FallFac               FallFac           FallFac           |
27 | 13 | oveq2d 6666 |
. . . 4
     C𝑐       FallFac
         |
28 | | nnm1nn0 11334 |
. . . . . . . 8
 
   |
29 | 2, 28 | syl 17 |
. . . . . . 7
     |
30 | | faccl 13070 |
. . . . . . . 8
  
        |
31 | 30 | nncnd 11036 |
. . . . . . 7
  
        |
32 | 29, 31 | syl 17 |
. . . . . 6
    
    |
33 | | facne0 13073 |
. . . . . . 7
  
        |
34 | 29, 33 | syl 17 |
. . . . . 6
    
    |
35 | 2 | nnne0d 11065 |
. . . . . 6
   |
36 | 9, 32, 3, 34, 35 | divcan5d 10827 |
. . . . 5
   
FallFac              FallFac
    
     |
37 | | 1cnd 10056 |
. . . . . . . . 9
   |
38 | 3, 37 | npcand 10396 |
. . . . . . . 8
       |
39 | 38 | fveq2d 6195 |
. . . . . . 7
               |
40 | 38 | oveq2d 6666 |
. . . . . . . 8
     
                 |
41 | | facp1 13065 |
. . . . . . . . 9
  
            
         |
42 | 29, 41 | syl 17 |
. . . . . . . 8
                       |
43 | 3, 32 | mulcomd 10061 |
. . . . . . . 8
                   |
44 | 40, 42, 43 | 3eqtr4d 2666 |
. . . . . . 7
             
     |
45 | 39, 44 | eqtr3d 2658 |
. . . . . 6
         
     |
46 | 45 | oveq2d 6666 |
. . . . 5
   
FallFac          
FallFac              |
47 | 3, 37 | subcld 10392 |
. . . . . . . 8
     |
48 | 1, 47 | subcld 10392 |
. . . . . . 7
  
    |
49 | | fallfaccl 14747 |
. . . . . . . 8
  
   FallFac
     |
50 | 1, 29, 49 | syl2anc 693 |
. . . . . . 7
  FallFac
     |
51 | 48, 50, 32, 34 | divassd 10836 |
. . . . . 6
        FallFac
                  FallFac 
            |
52 | 38 | oveq2d 6666 |
. . . . . . . . 9
  FallFac
 
    FallFac    |
53 | | fallfacp1 14761 |
. . . . . . . . . 10
  
   FallFac
 
     FallFac    
      |
54 | 1, 29, 53 | syl2anc 693 |
. . . . . . . . 9
  FallFac
 
     FallFac    
      |
55 | 52, 54 | eqtr3d 2658 |
. . . . . . . 8
  FallFac
   FallFac    
      |
56 | 48, 50 | mulcomd 10061 |
. . . . . . . 8
   
   FallFac       FallFac 
         |
57 | 55, 56 | eqtr4d 2659 |
. . . . . . 7
  FallFac
       FallFac
      |
58 | 57 | oveq1d 6665 |
. . . . . 6
   FallFac                FallFac 
            |
59 | 1, 29 | bccval 38537 |
. . . . . . 7
  C𝑐     FallFac
      
     |
60 | 59 | oveq2d 6666 |
. . . . . 6
   
   C𝑐
     
    FallFac
      
      |
61 | 51, 58, 60 | 3eqtr4rd 2667 |
. . . . 5
   
   C𝑐
     FallFac           |
62 | 36, 46, 61 | 3eqtr4rd 2667 |
. . . 4
   
   C𝑐
     
FallFac          |
63 | 27, 62 | oveq12d 6668 |
. . 3
      C𝑐    
   C𝑐
          FallFac           FallFac           |
64 | 23, 26, 63 | 3eqtr4rd 2667 |
. 2
      C𝑐    
   C𝑐
          FallFac     FallFac           |
65 | 12, 21, 64 | 3eqtr4rd 2667 |
1
      C𝑐    
   C𝑐
      C𝑐    |