MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcsh Structured version   Visualization version   Unicode version

Theorem crctcsh 26716
Description: Cyclically shifting the indices of a circuit  <. F ,  P >. results in a circuit  <. H ,  Q >.. (Contributed by AV, 10-Mar-2021.) (Proof shortened by AV, 31-Oct-2021.)
Hypotheses
Ref Expression
crctcsh.v  |-  V  =  (Vtx `  G )
crctcsh.i  |-  I  =  (iEdg `  G )
crctcsh.d  |-  ( ph  ->  F (Circuits `  G
) P )
crctcsh.n  |-  N  =  ( # `  F
)
crctcsh.s  |-  ( ph  ->  S  e.  ( 0..^ N ) )
crctcsh.h  |-  H  =  ( F cyclShift  S )
crctcsh.q  |-  Q  =  ( x  e.  ( 0 ... N ) 
|->  if ( x  <_ 
( N  -  S
) ,  ( P `
 ( x  +  S ) ) ,  ( P `  (
( x  +  S
)  -  N ) ) ) )
Assertion
Ref Expression
crctcsh  |-  ( ph  ->  H (Circuits `  G
) Q )
Distinct variable groups:    x, N    x, P    x, S    ph, x    x, F    x, I    x, V    x, H
Allowed substitution hints:    Q( x)    G( x)

Proof of Theorem crctcsh
StepHypRef Expression
1 crctcsh.v . . . 4  |-  V  =  (Vtx `  G )
2 crctcsh.i . . . 4  |-  I  =  (iEdg `  G )
3 crctcsh.d . . . 4  |-  ( ph  ->  F (Circuits `  G
) P )
4 crctcsh.n . . . 4  |-  N  =  ( # `  F
)
5 crctcsh.s . . . 4  |-  ( ph  ->  S  e.  ( 0..^ N ) )
6 crctcsh.h . . . 4  |-  H  =  ( F cyclShift  S )
7 crctcsh.q . . . 4  |-  Q  =  ( x  e.  ( 0 ... N ) 
|->  if ( x  <_ 
( N  -  S
) ,  ( P `
 ( x  +  S ) ) ,  ( P `  (
( x  +  S
)  -  N ) ) ) )
81, 2, 3, 4, 5, 6, 7crctcshlem4 26712 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  ( H  =  F  /\  Q  =  P )
)
9 breq12 4658 . . . . 5  |-  ( ( H  =  F  /\  Q  =  P )  ->  ( H (Circuits `  G
) Q  <->  F (Circuits `  G ) P ) )
103, 9syl5ibrcom 237 . . . 4  |-  ( ph  ->  ( ( H  =  F  /\  Q  =  P )  ->  H
(Circuits `  G ) Q ) )
1110adantr 481 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  (
( H  =  F  /\  Q  =  P )  ->  H (Circuits `  G ) Q ) )
128, 11mpd 15 . 2  |-  ( (
ph  /\  S  = 
0 )  ->  H
(Circuits `  G ) Q )
131, 2, 3, 4, 5, 6, 7crctcshtrl 26715 . . . 4  |-  ( ph  ->  H (Trails `  G
) Q )
1413adantr 481 . . 3  |-  ( (
ph  /\  S  =/=  0 )  ->  H
(Trails `  G ) Q )
157a1i 11 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  Q  =  ( x  e.  ( 0 ... N
)  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S ) ) ,  ( P `  ( ( x  +  S )  -  N
) ) ) ) )
16 breq1 4656 . . . . . . 7  |-  ( x  =  0  ->  (
x  <_  ( N  -  S )  <->  0  <_  ( N  -  S ) ) )
17 oveq1 6657 . . . . . . . 8  |-  ( x  =  0  ->  (
x  +  S )  =  ( 0  +  S ) )
1817fveq2d 6195 . . . . . . 7  |-  ( x  =  0  ->  ( P `  ( x  +  S ) )  =  ( P `  (
0  +  S ) ) )
1917oveq1d 6665 . . . . . . . 8  |-  ( x  =  0  ->  (
( x  +  S
)  -  N )  =  ( ( 0  +  S )  -  N ) )
2019fveq2d 6195 . . . . . . 7  |-  ( x  =  0  ->  ( P `  ( (
x  +  S )  -  N ) )  =  ( P `  ( ( 0  +  S )  -  N
) ) )
2116, 18, 20ifbieq12d 4113 . . . . . 6  |-  ( x  =  0  ->  if ( x  <_  ( N  -  S ) ,  ( P `  (
x  +  S ) ) ,  ( P `
 ( ( x  +  S )  -  N ) ) )  =  if ( 0  <_  ( N  -  S ) ,  ( P `  ( 0  +  S ) ) ,  ( P `  ( ( 0  +  S )  -  N
) ) ) )
22 elfzo0le 12511 . . . . . . . . . 10  |-  ( S  e.  ( 0..^ N )  ->  S  <_  N )
235, 22syl 17 . . . . . . . . 9  |-  ( ph  ->  S  <_  N )
241, 2, 3, 4crctcshlem1 26709 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
2524nn0red 11352 . . . . . . . . . 10  |-  ( ph  ->  N  e.  RR )
26 elfzoelz 12470 . . . . . . . . . . . 12  |-  ( S  e.  ( 0..^ N )  ->  S  e.  ZZ )
275, 26syl 17 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  ZZ )
2827zred 11482 . . . . . . . . . 10  |-  ( ph  ->  S  e.  RR )
2925, 28subge0d 10617 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  ( N  -  S )  <->  S  <_  N ) )
3023, 29mpbird 247 . . . . . . . 8  |-  ( ph  ->  0  <_  ( N  -  S ) )
3130adantr 481 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  0  <_  ( N  -  S
) )
3231iftrued 4094 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  if ( 0  <_  ( N  -  S ) ,  ( P `  ( 0  +  S
) ) ,  ( P `  ( ( 0  +  S )  -  N ) ) )  =  ( P `
 ( 0  +  S ) ) )
3321, 32sylan9eqr 2678 . . . . 5  |-  ( ( ( ph  /\  S  =/=  0 )  /\  x  =  0 )  ->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S
) ) ,  ( P `  ( ( x  +  S )  -  N ) ) )  =  ( P `
 ( 0  +  S ) ) )
343adantr 481 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  F
(Circuits `  G ) P )
351, 2, 34, 4crctcshlem1 26709 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  N  e.  NN0 )
36 0elfz 12436 . . . . . 6  |-  ( N  e.  NN0  ->  0  e.  ( 0 ... N
) )
3735, 36syl 17 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  0  e.  ( 0 ... N
) )
38 fvexd 6203 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  ( P `  ( 0  +  S ) )  e. 
_V )
3915, 33, 37, 38fvmptd 6288 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  ( Q `  0 )  =  ( P `  ( 0  +  S
) ) )
40 breq1 4656 . . . . . . . 8  |-  ( x  =  ( # `  H
)  ->  ( x  <_  ( N  -  S
)  <->  ( # `  H
)  <_  ( N  -  S ) ) )
41 oveq1 6657 . . . . . . . . 9  |-  ( x  =  ( # `  H
)  ->  ( x  +  S )  =  ( ( # `  H
)  +  S ) )
4241fveq2d 6195 . . . . . . . 8  |-  ( x  =  ( # `  H
)  ->  ( P `  ( x  +  S
) )  =  ( P `  ( (
# `  H )  +  S ) ) )
4341oveq1d 6665 . . . . . . . . 9  |-  ( x  =  ( # `  H
)  ->  ( (
x  +  S )  -  N )  =  ( ( ( # `  H )  +  S
)  -  N ) )
4443fveq2d 6195 . . . . . . . 8  |-  ( x  =  ( # `  H
)  ->  ( P `  ( ( x  +  S )  -  N
) )  =  ( P `  ( ( ( # `  H
)  +  S )  -  N ) ) )
4540, 42, 44ifbieq12d 4113 . . . . . . 7  |-  ( x  =  ( # `  H
)  ->  if (
x  <_  ( N  -  S ) ,  ( P `  ( x  +  S ) ) ,  ( P `  ( ( x  +  S )  -  N
) ) )  =  if ( ( # `  H )  <_  ( N  -  S ) ,  ( P `  ( ( # `  H
)  +  S ) ) ,  ( P `
 ( ( (
# `  H )  +  S )  -  N
) ) ) )
46 elfzoel2 12469 . . . . . . . . . . . 12  |-  ( S  e.  ( 0..^ N )  ->  N  e.  ZZ )
47 elfzonn0 12512 . . . . . . . . . . . 12  |-  ( S  e.  ( 0..^ N )  ->  S  e.  NN0 )
48 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  S  e.  NN0 )  ->  S  e.  NN0 )
4948anim1i 592 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  ZZ  /\  S  e.  NN0 )  /\  S  =/=  0
)  ->  ( S  e.  NN0  /\  S  =/=  0 ) )
50 elnnne0 11306 . . . . . . . . . . . . . . . 16  |-  ( S  e.  NN  <->  ( S  e.  NN0  /\  S  =/=  0 ) )
5149, 50sylibr 224 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  S  e.  NN0 )  /\  S  =/=  0
)  ->  S  e.  NN )
5251nngt0d 11064 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  ZZ  /\  S  e.  NN0 )  /\  S  =/=  0
)  ->  0  <  S )
53 zre 11381 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  N  e.  RR )
54 nn0re 11301 . . . . . . . . . . . . . . . . 17  |-  ( S  e.  NN0  ->  S  e.  RR )
5553, 54anim12ci 591 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  S  e.  NN0 )  -> 
( S  e.  RR  /\  N  e.  RR ) )
5655adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  S  e.  NN0 )  /\  S  =/=  0
)  ->  ( S  e.  RR  /\  N  e.  RR ) )
57 ltsubpos 10520 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  RR  /\  N  e.  RR )  ->  ( 0  <  S  <->  ( N  -  S )  <  N ) )
5857bicomd 213 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  RR  /\  N  e.  RR )  ->  ( ( N  -  S )  <  N  <->  0  <  S ) )
5956, 58syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  ZZ  /\  S  e.  NN0 )  /\  S  =/=  0
)  ->  ( ( N  -  S )  <  N  <->  0  <  S
) )
6052, 59mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  ZZ  /\  S  e.  NN0 )  /\  S  =/=  0
)  ->  ( N  -  S )  <  N
)
6160ex 450 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  S  e.  NN0 )  -> 
( S  =/=  0  ->  ( N  -  S
)  <  N )
)
6246, 47, 61syl2anc 693 . . . . . . . . . . 11  |-  ( S  e.  ( 0..^ N )  ->  ( S  =/=  0  ->  ( N  -  S )  < 
N ) )
635, 62syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( S  =/=  0  ->  ( N  -  S
)  <  N )
)
6463imp 445 . . . . . . . . 9  |-  ( (
ph  /\  S  =/=  0 )  ->  ( N  -  S )  <  N )
655adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  =/=  0 )  ->  S  e.  ( 0..^ N ) )
661, 2, 34, 4, 65, 6crctcshlem2 26710 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  =/=  0 )  ->  ( # `
 H )  =  N )
6766breq1d 4663 . . . . . . . . . . 11  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( # `  H )  <_  ( N  -  S )  <->  N  <_  ( N  -  S ) ) )
6867notbid 308 . . . . . . . . . 10  |-  ( (
ph  /\  S  =/=  0 )  ->  ( -.  ( # `  H
)  <_  ( N  -  S )  <->  -.  N  <_  ( N  -  S
) ) )
6925, 28resubcld 10458 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  S
)  e.  RR )
7069, 25jca 554 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  -  S )  e.  RR  /\  N  e.  RR ) )
7170adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( N  -  S
)  e.  RR  /\  N  e.  RR )
)
72 ltnle 10117 . . . . . . . . . . 11  |-  ( ( ( N  -  S
)  e.  RR  /\  N  e.  RR )  ->  ( ( N  -  S )  <  N  <->  -.  N  <_  ( N  -  S ) ) )
7371, 72syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( N  -  S
)  <  N  <->  -.  N  <_  ( N  -  S
) ) )
7468, 73bitr4d 271 . . . . . . . . 9  |-  ( (
ph  /\  S  =/=  0 )  ->  ( -.  ( # `  H
)  <_  ( N  -  S )  <->  ( N  -  S )  <  N
) )
7564, 74mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  -.  ( # `  H )  <_  ( N  -  S ) )
7675iffalsed 4097 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  if ( ( # `  H
)  <_  ( N  -  S ) ,  ( P `  ( (
# `  H )  +  S ) ) ,  ( P `  (
( ( # `  H
)  +  S )  -  N ) ) )  =  ( P `
 ( ( (
# `  H )  +  S )  -  N
) ) )
7745, 76sylan9eqr 2678 . . . . . 6  |-  ( ( ( ph  /\  S  =/=  0 )  /\  x  =  ( # `  H
) )  ->  if ( x  <_  ( N  -  S ) ,  ( P `  (
x  +  S ) ) ,  ( P `
 ( ( x  +  S )  -  N ) ) )  =  ( P `  ( ( ( # `  H )  +  S
)  -  N ) ) )
781, 2, 3, 4, 5, 6crctcshlem2 26710 . . . . . . . . . . . . 13  |-  ( ph  ->  ( # `  H
)  =  N )
7978, 24eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  H
)  e.  NN0 )
8079nn0cnd 11353 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  H
)  e.  CC )
8127zcnd 11483 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  CC )
8224nn0cnd 11353 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  CC )
8380, 81, 82addsubd 10413 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( # `  H )  +  S
)  -  N )  =  ( ( (
# `  H )  -  N )  +  S
) )
8478oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  H
)  -  N )  =  ( N  -  N ) )
8582subidd 10380 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  N
)  =  0 )
8684, 85eqtrd 2656 . . . . . . . . . . 11  |-  ( ph  ->  ( ( # `  H
)  -  N )  =  0 )
8786oveq1d 6665 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( # `  H )  -  N
)  +  S )  =  ( 0  +  S ) )
8883, 87eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( ( # `  H )  +  S
)  -  N )  =  ( 0  +  S ) )
8988fveq2d 6195 . . . . . . . 8  |-  ( ph  ->  ( P `  (
( ( # `  H
)  +  S )  -  N ) )  =  ( P `  ( 0  +  S
) ) )
9089adantr 481 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  ( P `  ( (
( # `  H )  +  S )  -  N ) )  =  ( P `  (
0  +  S ) ) )
9190adantr 481 . . . . . 6  |-  ( ( ( ph  /\  S  =/=  0 )  /\  x  =  ( # `  H
) )  ->  ( P `  ( (
( # `  H )  +  S )  -  N ) )  =  ( P `  (
0  +  S ) ) )
9277, 91eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  S  =/=  0 )  /\  x  =  ( # `  H
) )  ->  if ( x  <_  ( N  -  S ) ,  ( P `  (
x  +  S ) ) ,  ( P `
 ( ( x  +  S )  -  N ) ) )  =  ( P `  ( 0  +  S
) ) )
9378adantr 481 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  ( # `
 H )  =  N )
94 nn0fz0 12437 . . . . . . . 8  |-  ( N  e.  NN0  <->  N  e.  (
0 ... N ) )
9524, 94sylib 208 . . . . . . 7  |-  ( ph  ->  N  e.  ( 0 ... N ) )
9695adantr 481 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  N  e.  ( 0 ... N
) )
9793, 96eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  ( # `
 H )  e.  ( 0 ... N
) )
9815, 92, 97, 38fvmptd 6288 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  ( Q `  ( # `  H
) )  =  ( P `  ( 0  +  S ) ) )
9939, 98eqtr4d 2659 . . 3  |-  ( (
ph  /\  S  =/=  0 )  ->  ( Q `  0 )  =  ( Q `  ( # `  H ) ) )
100 iscrct 26685 . . 3  |-  ( H (Circuits `  G ) Q 
<->  ( H (Trails `  G ) Q  /\  ( Q `  0 )  =  ( Q `  ( # `  H ) ) ) )
10114, 99, 100sylanbrc 698 . 2  |-  ( (
ph  /\  S  =/=  0 )  ->  H
(Circuits `  G ) Q )
10212, 101pm2.61dane 2881 1  |-  ( ph  ->  H (Circuits `  G
) Q )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117   cyclShift ccsh 13534  Vtxcvtx 25874  iEdgciedg 25875  Trailsctrls 26587  Circuitsccrcts 26679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535  df-wlks 26495  df-trls 26589  df-crcts 26681
This theorem is referenced by:  eucrctshift  27103
  Copyright terms: Public domain W3C validator