MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadss Structured version   Visualization version   Unicode version

Theorem dyadss 23362
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) (Proof shortened by Mario Carneiro, 26-Apr-2016.)
Hypothesis
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
Assertion
Ref Expression
dyadss  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  NN0 ) )  ->  (
( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  ->  D  <_  C
) )
Distinct variable groups:    x, y, B    x, C, y    x, A, y    x, D, y   
x, F, y

Proof of Theorem dyadss
StepHypRef Expression
1 simpr 477 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) ) )
2 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  B  e.  ZZ )
3 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  D  e.  NN0 )
4 dyadmbl.1 . . . . . . . . . . 11  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
54dyadval 23360 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  D  e.  NN0 )  -> 
( B F D )  =  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  + 
1 )  /  (
2 ^ D ) ) >. )
62, 3, 5syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( B F D )  =  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  +  1 )  / 
( 2 ^ D
) ) >. )
76fveq2d 6195 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( [,] `  ( B F D ) )  =  ( [,] `  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  + 
1 )  /  (
2 ^ D ) ) >. ) )
8 df-ov 6653 . . . . . . . 8  |-  ( ( B  /  ( 2 ^ D ) ) [,] ( ( B  +  1 )  / 
( 2 ^ D
) ) )  =  ( [,] `  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  +  1 )  / 
( 2 ^ D
) ) >. )
97, 8syl6eqr 2674 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( [,] `  ( B F D ) )  =  ( ( B  /  (
2 ^ D ) ) [,] ( ( B  +  1 )  /  ( 2 ^ D ) ) ) )
102zred 11482 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  B  e.  RR )
11 2nn 11185 . . . . . . . . . 10  |-  2  e.  NN
12 nnexpcl 12873 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  D  e.  NN0 )  -> 
( 2 ^ D
)  e.  NN )
1311, 3, 12sylancr 695 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( 2 ^ D )  e.  NN )
1410, 13nndivred 11069 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( B  /  ( 2 ^ D ) )  e.  RR )
15 peano2re 10209 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
1610, 15syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( B  +  1 )  e.  RR )
1716, 13nndivred 11069 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( ( B  +  1 )  /  ( 2 ^ D ) )  e.  RR )
18 iccssre 12255 . . . . . . . 8  |-  ( ( ( B  /  (
2 ^ D ) )  e.  RR  /\  ( ( B  + 
1 )  /  (
2 ^ D ) )  e.  RR )  ->  ( ( B  /  ( 2 ^ D ) ) [,] ( ( B  + 
1 )  /  (
2 ^ D ) ) )  C_  RR )
1914, 17, 18syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( ( B  /  ( 2 ^ D ) ) [,] ( ( B  + 
1 )  /  (
2 ^ D ) ) )  C_  RR )
209, 19eqsstrd 3639 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( [,] `  ( B F D ) )  C_  RR )
21 ovolss 23253 . . . . . 6  |-  ( ( ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  /\  ( [,] `  ( B F D ) ) 
C_  RR )  -> 
( vol* `  ( [,] `  ( A F C ) ) )  <_  ( vol* `  ( [,] `  ( B F D ) ) ) )
221, 20, 21syl2anc 693 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( vol* `  ( [,] `  ( A F C ) ) )  <_  ( vol* `  ( [,] `  ( B F D ) ) ) )
23 simplll 798 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  A  e.  ZZ )
24 simplrl 800 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  C  e.  NN0 )
254dyadovol 23361 . . . . . 6  |-  ( ( A  e.  ZZ  /\  C  e.  NN0 )  -> 
( vol* `  ( [,] `  ( A F C ) ) )  =  ( 1  /  ( 2 ^ C ) ) )
2623, 24, 25syl2anc 693 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( vol* `  ( [,] `  ( A F C ) ) )  =  ( 1  /  ( 2 ^ C ) ) )
274dyadovol 23361 . . . . . 6  |-  ( ( B  e.  ZZ  /\  D  e.  NN0 )  -> 
( vol* `  ( [,] `  ( B F D ) ) )  =  ( 1  /  ( 2 ^ D ) ) )
282, 3, 27syl2anc 693 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( vol* `  ( [,] `  ( B F D ) ) )  =  ( 1  /  ( 2 ^ D ) ) )
2922, 26, 283brtr3d 4684 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( 1  /  ( 2 ^ C ) )  <_ 
( 1  /  (
2 ^ D ) ) )
30 nnexpcl 12873 . . . . . 6  |-  ( ( 2  e.  NN  /\  C  e.  NN0 )  -> 
( 2 ^ C
)  e.  NN )
3111, 24, 30sylancr 695 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( 2 ^ C )  e.  NN )
32 nnre 11027 . . . . . . 7  |-  ( ( 2 ^ D )  e.  NN  ->  (
2 ^ D )  e.  RR )
33 nngt0 11049 . . . . . . 7  |-  ( ( 2 ^ D )  e.  NN  ->  0  <  ( 2 ^ D
) )
3432, 33jca 554 . . . . . 6  |-  ( ( 2 ^ D )  e.  NN  ->  (
( 2 ^ D
)  e.  RR  /\  0  <  ( 2 ^ D ) ) )
35 nnre 11027 . . . . . . 7  |-  ( ( 2 ^ C )  e.  NN  ->  (
2 ^ C )  e.  RR )
36 nngt0 11049 . . . . . . 7  |-  ( ( 2 ^ C )  e.  NN  ->  0  <  ( 2 ^ C
) )
3735, 36jca 554 . . . . . 6  |-  ( ( 2 ^ C )  e.  NN  ->  (
( 2 ^ C
)  e.  RR  /\  0  <  ( 2 ^ C ) ) )
38 lerec 10906 . . . . . 6  |-  ( ( ( ( 2 ^ D )  e.  RR  /\  0  <  ( 2 ^ D ) )  /\  ( ( 2 ^ C )  e.  RR  /\  0  < 
( 2 ^ C
) ) )  -> 
( ( 2 ^ D )  <_  (
2 ^ C )  <-> 
( 1  /  (
2 ^ C ) )  <_  ( 1  /  ( 2 ^ D ) ) ) )
3934, 37, 38syl2an 494 . . . . 5  |-  ( ( ( 2 ^ D
)  e.  NN  /\  ( 2 ^ C
)  e.  NN )  ->  ( ( 2 ^ D )  <_ 
( 2 ^ C
)  <->  ( 1  / 
( 2 ^ C
) )  <_  (
1  /  ( 2 ^ D ) ) ) )
4013, 31, 39syl2anc 693 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( (
2 ^ D )  <_  ( 2 ^ C )  <->  ( 1  /  ( 2 ^ C ) )  <_ 
( 1  /  (
2 ^ D ) ) ) )
4129, 40mpbird 247 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( 2 ^ D )  <_ 
( 2 ^ C
) )
42 2re 11090 . . . . 5  |-  2  e.  RR
4342a1i 11 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  2  e.  RR )
443nn0zd 11480 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  D  e.  ZZ )
4524nn0zd 11480 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  C  e.  ZZ )
46 1lt2 11194 . . . . 5  |-  1  <  2
4746a1i 11 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  1  <  2 )
4843, 44, 45, 47leexp2d 13039 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  ( D  <_  C  <->  ( 2 ^ D )  <_  (
2 ^ C ) ) )
4941, 48mpbird 247 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )  ->  D  <_  C )
5049ex 450 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  NN0 ) )  ->  (
( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  ->  D  <_  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   [,]cicc 12178   ^cexp 12860   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233
This theorem is referenced by:  dyadmaxlem  23365
  Copyright terms: Public domain W3C validator