Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem4 Structured version   Visualization version   Unicode version

Theorem etransclem4 40455
Description:  F expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem4.a  |-  ( ph  ->  A  C_  CC )
etransclem4.p  |-  ( ph  ->  P  e.  NN )
etransclem4.M  |-  ( ph  ->  M  e.  NN0 )
etransclem4.f  |-  F  =  ( x  e.  A  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
etransclem4.h  |-  H  =  ( j  e.  ( 0 ... M ) 
|->  ( x  e.  A  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
etransclem4.e  |-  E  =  ( x  e.  A  |-> 
prod_ j  e.  (
0 ... M ) ( ( H `  j
) `  x )
)
Assertion
Ref Expression
etransclem4  |-  ( ph  ->  F  =  E )
Distinct variable groups:    A, j, x    j, M    P, j    ph, j, x
Allowed substitution hints:    P( x)    E( x, j)    F( x, j)    H( x, j)    M( x)

Proof of Theorem etransclem4
StepHypRef Expression
1 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  j  e.  ( 0 ... M
) )
2 etransclem4.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  CC )
3 cnex 10017 . . . . . . . . . . 11  |-  CC  e.  _V
43ssex 4802 . . . . . . . . . 10  |-  ( A 
C_  CC  ->  A  e. 
_V )
5 mptexg 6484 . . . . . . . . . 10  |-  ( A  e.  _V  ->  (
x  e.  A  |->  ( ( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )  e.  _V )
62, 4, 53syl 18 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) )  e. 
_V )
76adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  (
x  e.  A  |->  ( ( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )  e.  _V )
8 etransclem4.h . . . . . . . . 9  |-  H  =  ( j  e.  ( 0 ... M ) 
|->  ( x  e.  A  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
98fvmpt2 6291 . . . . . . . 8  |-  ( ( j  e.  ( 0 ... M )  /\  ( x  e.  A  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) )  e. 
_V )  ->  ( H `  j )  =  ( x  e.  A  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
101, 7, 9syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  ( H `  j )  =  ( x  e.  A  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
11 ovexd 6680 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( 0 ... M
) )  /\  x  e.  A )  ->  (
( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  e.  _V )
1210, 11fvmpt2d 6293 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( 0 ... M
) )  /\  x  e.  A )  ->  (
( H `  j
) `  x )  =  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) )
1312an32s 846 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( 0 ... M
) )  ->  (
( H `  j
) `  x )  =  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) )
1413prodeq2dv 14653 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  prod_ j  e.  ( 0 ... M ) ( ( H `  j ) `
 x )  = 
prod_ j  e.  (
0 ... M ) ( ( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )
15 etransclem4.M . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
16 nn0uz 11722 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
1715, 16syl6eleq 2711 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
1817adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  ( ZZ>= `  0 )
)
192sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  CC )
2019adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( 0 ... M
) )  ->  x  e.  CC )
21 elfzelz 12342 . . . . . . . . 9  |-  ( j  e.  ( 0 ... M )  ->  j  e.  ZZ )
2221zcnd 11483 . . . . . . . 8  |-  ( j  e.  ( 0 ... M )  ->  j  e.  CC )
2322adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( 0 ... M
) )  ->  j  e.  CC )
2420, 23subcld 10392 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( 0 ... M
) )  ->  (
x  -  j )  e.  CC )
25 etransclem4.p . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
26 nnm1nn0 11334 . . . . . . . . 9  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
2725, 26syl 17 . . . . . . . 8  |-  ( ph  ->  ( P  -  1 )  e.  NN0 )
2825nnnn0d 11351 . . . . . . . 8  |-  ( ph  ->  P  e.  NN0 )
2927, 28ifcld 4131 . . . . . . 7  |-  ( ph  ->  if ( j  =  0 ,  ( P  -  1 ) ,  P )  e.  NN0 )
3029ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( 0 ... M
) )  ->  if ( j  =  0 ,  ( P  - 
1 ) ,  P
)  e.  NN0 )
3124, 30expcld 13008 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( 0 ... M
) )  ->  (
( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  e.  CC )
32 oveq2 6658 . . . . . 6  |-  ( j  =  0  ->  (
x  -  j )  =  ( x  - 
0 ) )
33 iftrue 4092 . . . . . 6  |-  ( j  =  0  ->  if ( j  =  0 ,  ( P  - 
1 ) ,  P
)  =  ( P  -  1 ) )
3432, 33oveq12d 6668 . . . . 5  |-  ( j  =  0  ->  (
( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( x  -  0 ) ^ ( P  - 
1 ) ) )
3518, 31, 34fprod1p 14698 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  prod_ j  e.  ( 0 ... M ) ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( ( x  -  0 ) ^ ( P  - 
1 ) )  x. 
prod_ j  e.  (
( 0  +  1 ) ... M ) ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
3619subid1d 10381 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
x  -  0 )  =  x )
3736oveq1d 6665 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  -  0 ) ^ ( P  -  1 ) )  =  ( x ^
( P  -  1 ) ) )
38 0p1e1 11132 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
3938oveq1i 6660 . . . . . . . 8  |-  ( ( 0  +  1 ) ... M )  =  ( 1 ... M
)
4039a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( 0  +  1 ) ... M
)  =  ( 1 ... M ) )
41 0red 10041 . . . . . . . . . . . . 13  |-  ( j  e.  ( 1 ... M )  ->  0  e.  RR )
42 1red 10055 . . . . . . . . . . . . 13  |-  ( j  e.  ( 1 ... M )  ->  1  e.  RR )
43 elfzelz 12342 . . . . . . . . . . . . . 14  |-  ( j  e.  ( 1 ... M )  ->  j  e.  ZZ )
4443zred 11482 . . . . . . . . . . . . 13  |-  ( j  e.  ( 1 ... M )  ->  j  e.  RR )
45 0lt1 10550 . . . . . . . . . . . . . 14  |-  0  <  1
4645a1i 11 . . . . . . . . . . . . 13  |-  ( j  e.  ( 1 ... M )  ->  0  <  1 )
47 elfzle1 12344 . . . . . . . . . . . . 13  |-  ( j  e.  ( 1 ... M )  ->  1  <_  j )
4841, 42, 44, 46, 47ltletrd 10197 . . . . . . . . . . . 12  |-  ( j  e.  ( 1 ... M )  ->  0  <  j )
4948gt0ne0d 10592 . . . . . . . . . . 11  |-  ( j  e.  ( 1 ... M )  ->  j  =/=  0 )
5049neneqd 2799 . . . . . . . . . 10  |-  ( j  e.  ( 1 ... M )  ->  -.  j  =  0 )
5150iffalsed 4097 . . . . . . . . 9  |-  ( j  e.  ( 1 ... M )  ->  if ( j  =  0 ,  ( P  - 
1 ) ,  P
)  =  P )
5251oveq2d 6666 . . . . . . . 8  |-  ( j  e.  ( 1 ... M )  ->  (
( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( x  -  j ) ^ P ) )
5352adantl 482 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( x  -  j ) ^ P ) )
5440, 53prodeq12rdv 14657 . . . . . 6  |-  ( ph  ->  prod_ j  e.  ( ( 0  +  1 ) ... M ) ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) )  =  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) )
5554adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  prod_ j  e.  ( ( 0  +  1 ) ... M ) ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  =  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P
) )
5637, 55oveq12d 6668 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  - 
0 ) ^ ( P  -  1 ) )  x.  prod_ j  e.  ( ( 0  +  1 ) ... M
) ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) )  =  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
5714, 35, 563eqtrrd 2661 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
( x ^ ( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M
) ( ( x  -  j ) ^ P ) )  = 
prod_ j  e.  (
0 ... M ) ( ( H `  j
) `  x )
)
5857mpteq2dva 4744 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )  =  ( x  e.  A  |->  prod_ j  e.  ( 0 ... M
) ( ( H `
 j ) `  x ) ) )
59 etransclem4.f . 2  |-  F  =  ( x  e.  A  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
60 etransclem4.e . 2  |-  E  =  ( x  e.  A  |-> 
prod_ j  e.  (
0 ... M ) ( ( H `  j
) `  x )
)
6158, 59, 603eqtr4g 2681 1  |-  ( ph  ->  F  =  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  etransclem13  40464  etransclem29  40480
  Copyright terms: Public domain W3C validator