Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem7 Structured version   Visualization version   Unicode version

Theorem etransclem7 40458
Description: The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem7.n  |-  ( ph  ->  P  e.  NN )
etransclem7.c  |-  ( ph  ->  C : ( 0 ... M ) --> ( 0 ... N ) )
etransclem7.j  |-  ( ph  ->  J  e.  ( 0 ... M ) )
Assertion
Ref Expression
etransclem7  |-  ( ph  ->  prod_ j  e.  ( 1 ... M ) if ( P  < 
( C `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) )  e.  ZZ )
Distinct variable groups:    j, M    ph, j
Allowed substitution hints:    C( j)    P( j)    J( j)    N( j)

Proof of Theorem etransclem7
StepHypRef Expression
1 fzfid 12772 . 2  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
2 0zd 11389 . . 3  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  P  <  ( C `  j
) )  ->  0  e.  ZZ )
3 0zd 11389 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
0  e.  ZZ )
4 etransclem7.n . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN )
54nnzd 11481 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
65ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  ->  P  e.  ZZ )
75adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  P  e.  ZZ )
8 etransclem7.c . . . . . . . . . . . . . 14  |-  ( ph  ->  C : ( 0 ... M ) --> ( 0 ... N ) )
98adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  C : ( 0 ... M ) --> ( 0 ... N ) )
10 0zd 11389 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... M )  ->  0  e.  ZZ )
11 fzp1ss 12392 . . . . . . . . . . . . . . . 16  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... M ) 
C_  ( 0 ... M ) )
1210, 11syl 17 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 1 ... M )  ->  (
( 0  +  1 ) ... M ) 
C_  ( 0 ... M ) )
13 id 22 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... M )  ->  j  e.  ( 1 ... M
) )
14 1e0p1 11552 . . . . . . . . . . . . . . . . 17  |-  1  =  ( 0  +  1 )
1514oveq1i 6660 . . . . . . . . . . . . . . . 16  |-  ( 1 ... M )  =  ( ( 0  +  1 ) ... M
)
1613, 15syl6eleq 2711 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 1 ... M )  ->  j  e.  ( ( 0  +  1 ) ... M
) )
1712, 16sseldd 3604 . . . . . . . . . . . . . 14  |-  ( j  e.  ( 1 ... M )  ->  j  e.  ( 0 ... M
) )
1817adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  j  e.  ( 0 ... M
) )
199, 18ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( C `  j )  e.  ( 0 ... N
) )
2019elfzelzd 39530 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( C `  j )  e.  ZZ )
217, 20zsubcld 11487 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( P  -  ( C `  j ) )  e.  ZZ )
2221adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( P  -  ( C `  j )
)  e.  ZZ )
233, 6, 223jca 1242 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( 0  e.  ZZ  /\  P  e.  ZZ  /\  ( P  -  ( C `  j )
)  e.  ZZ ) )
2420zred 11482 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( C `  j )  e.  RR )
2524adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( C `  j
)  e.  RR )
266zred 11482 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  ->  P  e.  RR )
27 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  ->  -.  P  <  ( C `
 j ) )
2825, 26, 27nltled 10187 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( C `  j
)  <_  P )
2926, 25subge0d 10617 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( 0  <_  ( P  -  ( C `  j ) )  <->  ( C `  j )  <_  P
) )
3028, 29mpbird 247 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
0  <_  ( P  -  ( C `  j ) ) )
31 elfzle1 12344 . . . . . . . . . . 11  |-  ( ( C `  j )  e.  ( 0 ... N )  ->  0  <_  ( C `  j
) )
3219, 31syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  0  <_  ( C `  j
) )
3332adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
0  <_  ( C `  j ) )
3426, 25subge02d 10619 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( 0  <_  ( C `  j )  <->  ( P  -  ( C `
 j ) )  <_  P ) )
3533, 34mpbid 222 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( P  -  ( C `  j )
)  <_  P )
3623, 30, 35jca32 558 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( ( 0  e.  ZZ  /\  P  e.  ZZ  /\  ( P  -  ( C `  j ) )  e.  ZZ )  /\  (
0  <_  ( P  -  ( C `  j ) )  /\  ( P  -  ( C `  j )
)  <_  P )
) )
37 elfz2 12333 . . . . . . 7  |-  ( ( P  -  ( C `
 j ) )  e.  ( 0 ... P )  <->  ( (
0  e.  ZZ  /\  P  e.  ZZ  /\  ( P  -  ( C `  j ) )  e.  ZZ )  /\  (
0  <_  ( P  -  ( C `  j ) )  /\  ( P  -  ( C `  j )
)  <_  P )
) )
3836, 37sylibr 224 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( P  -  ( C `  j )
)  e.  ( 0 ... P ) )
39 permnn 13113 . . . . . 6  |-  ( ( P  -  ( C `
 j ) )  e.  ( 0 ... P )  ->  (
( ! `  P
)  /  ( ! `
 ( P  -  ( C `  j ) ) ) )  e.  NN )
4038, 39syl 17 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( ( ! `  P )  /  ( ! `  ( P  -  ( C `  j ) ) ) )  e.  NN )
4140nnzd 11481 . . . 4  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( ( ! `  P )  /  ( ! `  ( P  -  ( C `  j ) ) ) )  e.  ZZ )
42 etransclem7.j . . . . . . . . 9  |-  ( ph  ->  J  e.  ( 0 ... M ) )
4342elfzelzd 39530 . . . . . . . 8  |-  ( ph  ->  J  e.  ZZ )
4443adantr 481 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  J  e.  ZZ )
45 elfzelz 12342 . . . . . . . 8  |-  ( j  e.  ( 1 ... M )  ->  j  e.  ZZ )
4645adantl 482 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  j  e.  ZZ )
4744, 46zsubcld 11487 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( J  -  j )  e.  ZZ )
4847adantr 481 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( J  -  j
)  e.  ZZ )
49 elnn0z 11390 . . . . . 6  |-  ( ( P  -  ( C `
 j ) )  e.  NN0  <->  ( ( P  -  ( C `  j ) )  e.  ZZ  /\  0  <_ 
( P  -  ( C `  j )
) ) )
5022, 30, 49sylanbrc 698 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( P  -  ( C `  j )
)  e.  NN0 )
51 zexpcl 12875 . . . . 5  |-  ( ( ( J  -  j
)  e.  ZZ  /\  ( P  -  ( C `  j )
)  e.  NN0 )  ->  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) )  e.  ZZ )
5248, 50, 51syl2anc 693 . . . 4  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( ( J  -  j ) ^ ( P  -  ( C `  j ) ) )  e.  ZZ )
5341, 52zmulcld 11488 . . 3  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  -.  P  <  ( C `  j ) )  -> 
( ( ( ! `
 P )  / 
( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) )  e.  ZZ )
542, 53ifclda 4120 . 2  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  if ( P  <  ( C `
 j ) ,  0 ,  ( ( ( ! `  P
)  /  ( ! `
 ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) )  e.  ZZ )
551, 54fprodzcl 14684 1  |-  ( ph  ->  prod_ j  e.  ( 1 ... M ) if ( P  < 
( C `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) )  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990    C_ wss 3574   ifcif 4086   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326   ^cexp 12860   !cfa 13060   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  etransclem15  40466  etransclem28  40479
  Copyright terms: Public domain W3C validator