Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem15 Structured version   Visualization version   Unicode version

Theorem etransclem15 40466
Description: Value of the term  T, when  J  =  0 and  ( C `  0 )  =  P  -  1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem15.p  |-  ( ph  ->  P  e.  NN )
etransclem15.m  |-  ( ph  ->  M  e.  NN0 )
etransclem15.n  |-  ( ph  ->  N  e.  NN0 )
etransclem15.c  |-  ( ph  ->  C : ( 0 ... M ) --> ( 0 ... N ) )
etransclem15.t  |-  T  =  ( ( ( ! `
 N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  ( C `
 j ) ) )  x.  ( if ( ( P  - 
1 )  <  ( C `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) ) )  x.  prod_ j  e.  ( 1 ... M ) if ( P  < 
( C `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) ) ) )
etransclem15.j  |-  ( ph  ->  J  =  0 )
etransclem15.cpm1  |-  ( ph  ->  ( C `  0
)  =/=  ( P  -  1 ) )
Assertion
Ref Expression
etransclem15  |-  ( ph  ->  T  =  0 )
Distinct variable groups:    j, M    ph, j
Allowed substitution hints:    C( j)    P( j)    T( j)    J( j)    N( j)

Proof of Theorem etransclem15
StepHypRef Expression
1 etransclem15.t . . 3  |-  T  =  ( ( ( ! `
 N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  ( C `
 j ) ) )  x.  ( if ( ( P  - 
1 )  <  ( C `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) ) )  x.  prod_ j  e.  ( 1 ... M ) if ( P  < 
( C `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) ) ) )
21a1i 11 . 2  |-  ( ph  ->  T  =  ( ( ( ! `  N
)  /  prod_ j  e.  ( 0 ... M
) ( ! `  ( C `  j ) ) )  x.  ( if ( ( P  - 
1 )  <  ( C `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) ) )  x.  prod_ j  e.  ( 1 ... M ) if ( P  < 
( C `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) ) ) ) )
3 iftrue 4092 . . . . . . 7  |-  ( ( P  -  1 )  <  ( C ` 
0 )  ->  if ( ( P  - 
1 )  <  ( C `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) ) )  =  0 )
43adantl 482 . . . . . 6  |-  ( (
ph  /\  ( P  -  1 )  < 
( C `  0
) )  ->  if ( ( P  - 
1 )  <  ( C `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) ) )  =  0 )
5 iffalse 4095 . . . . . . . 8  |-  ( -.  ( P  -  1 )  <  ( C `
 0 )  ->  if ( ( P  - 
1 )  <  ( C `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) ) )  =  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `  ( ( P  - 
1 )  -  ( C `  0 )
) ) )  x.  ( J ^ (
( P  -  1 )  -  ( C `
 0 ) ) ) ) )
65adantl 482 . . . . . . 7  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  ->  if ( ( P  - 
1 )  <  ( C `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) ) )  =  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `  ( ( P  - 
1 )  -  ( C `  0 )
) ) )  x.  ( J ^ (
( P  -  1 )  -  ( C `
 0 ) ) ) ) )
7 etransclem15.j . . . . . . . . . . 11  |-  ( ph  ->  J  =  0 )
87oveq1d 6665 . . . . . . . . . 10  |-  ( ph  ->  ( J ^ (
( P  -  1 )  -  ( C `
 0 ) ) )  =  ( 0 ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) )
98adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( J ^ (
( P  -  1 )  -  ( C `
 0 ) ) )  =  ( 0 ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) )
10 etransclem15.p . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  NN )
1110nnzd 11481 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  ZZ )
12 1zzd 11408 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  ZZ )
1311, 12zsubcld 11487 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  -  1 )  e.  ZZ )
14 etransclem15.c . . . . . . . . . . . . . . 15  |-  ( ph  ->  C : ( 0 ... M ) --> ( 0 ... N ) )
15 etransclem15.m . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN0 )
16 nn0uz 11722 . . . . . . . . . . . . . . . . 17  |-  NN0  =  ( ZZ>= `  0 )
1715, 16syl6eleq 2711 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
18 eluzfz1 12348 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... M
) )
1917, 18syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  e.  ( 0 ... M ) )
2014, 19ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C `  0
)  e.  ( 0 ... N ) )
2120elfzelzd 39530 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C `  0
)  e.  ZZ )
2213, 21zsubcld 11487 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P  - 
1 )  -  ( C `  0 )
)  e.  ZZ )
2322adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ( P  - 
1 )  -  ( C `  0 )
)  e.  ZZ )
2421zred 11482 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C `  0
)  e.  RR )
2524adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( C `  0
)  e.  RR )
2613zred 11482 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P  -  1 )  e.  RR )
2726adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( P  -  1 )  e.  RR )
28 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  ->  -.  ( P  -  1 )  <  ( C `
 0 ) )
2925, 27, 28nltled 10187 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( C `  0
)  <_  ( P  -  1 ) )
30 etransclem15.cpm1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C `  0
)  =/=  ( P  -  1 ) )
3130necomd 2849 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P  -  1 )  =/=  ( C `
 0 ) )
3231adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( P  -  1 )  =/=  ( C `
 0 ) )
3325, 27, 29, 32leneltd 10191 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( C `  0
)  <  ( P  -  1 ) )
3425, 27posdifd 10614 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ( C ` 
0 )  <  ( P  -  1 )  <->  0  <  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )
3533, 34mpbid 222 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
0  <  ( ( P  -  1 )  -  ( C ` 
0 ) ) )
36 elnnz 11387 . . . . . . . . . . 11  |-  ( ( ( P  -  1 )  -  ( C `
 0 ) )  e.  NN  <->  ( (
( P  -  1 )  -  ( C `
 0 ) )  e.  ZZ  /\  0  <  ( ( P  - 
1 )  -  ( C `  0 )
) ) )
3723, 35, 36sylanbrc 698 . . . . . . . . . 10  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ( P  - 
1 )  -  ( C `  0 )
)  e.  NN )
38370expd 13024 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( 0 ^ (
( P  -  1 )  -  ( C `
 0 ) ) )  =  0 )
399, 38eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( J ^ (
( P  -  1 )  -  ( C `
 0 ) ) )  =  0 )
4039oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ( ( ! `
 ( P  - 
1 ) )  / 
( ! `  (
( P  -  1 )  -  ( C `
 0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) )  =  ( ( ( ! `
 ( P  - 
1 ) )  / 
( ! `  (
( P  -  1 )  -  ( C `
 0 ) ) ) )  x.  0 ) )
41 nnm1nn0 11334 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
4210, 41syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  -  1 )  e.  NN0 )
4342faccld 13071 . . . . . . . . . . 11  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  e.  NN )
4443nncnd 11036 . . . . . . . . . 10  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  e.  CC )
4544adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ! `  ( P  -  1 ) )  e.  CC )
4637nnnn0d 11351 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ( P  - 
1 )  -  ( C `  0 )
)  e.  NN0 )
4746faccld 13071 . . . . . . . . . 10  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ! `  (
( P  -  1 )  -  ( C `
 0 ) ) )  e.  NN )
4847nncnd 11036 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ! `  (
( P  -  1 )  -  ( C `
 0 ) ) )  e.  CC )
4947nnne0d 11065 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ! `  (
( P  -  1 )  -  ( C `
 0 ) ) )  =/=  0 )
5045, 48, 49divcld 10801 . . . . . . . 8  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )  e.  CC )
5150mul01d 10235 . . . . . . 7  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  -> 
( ( ( ! `
 ( P  - 
1 ) )  / 
( ! `  (
( P  -  1 )  -  ( C `
 0 ) ) ) )  x.  0 )  =  0 )
526, 40, 513eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  -.  ( P  -  1 )  <  ( C ` 
0 ) )  ->  if ( ( P  - 
1 )  <  ( C `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) ) )  =  0 )
534, 52pm2.61dan 832 . . . . 5  |-  ( ph  ->  if ( ( P  -  1 )  < 
( C `  0
) ,  0 ,  ( ( ( ! `
 ( P  - 
1 ) )  / 
( ! `  (
( P  -  1 )  -  ( C `
 0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) ) )  =  0 )
5453oveq1d 6665 . . . 4  |-  ( ph  ->  ( if ( ( P  -  1 )  <  ( C ` 
0 ) ,  0 ,  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `  ( ( P  - 
1 )  -  ( C `  0 )
) ) )  x.  ( J ^ (
( P  -  1 )  -  ( C `
 0 ) ) ) ) )  x. 
prod_ j  e.  (
1 ... M ) if ( P  <  ( C `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) ) )  =  ( 0  x.  prod_ j  e.  ( 1 ... M ) if ( P  < 
( C `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) ) ) )
557, 19eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  J  e.  ( 0 ... M ) )
5610, 14, 55etransclem7 40458 . . . . . 6  |-  ( ph  ->  prod_ j  e.  ( 1 ... M ) if ( P  < 
( C `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) )  e.  ZZ )
5756zcnd 11483 . . . . 5  |-  ( ph  ->  prod_ j  e.  ( 1 ... M ) if ( P  < 
( C `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) )  e.  CC )
5857mul02d 10234 . . . 4  |-  ( ph  ->  ( 0  x.  prod_ j  e.  ( 1 ... M ) if ( P  <  ( C `
 j ) ,  0 ,  ( ( ( ! `  P
)  /  ( ! `
 ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) ) )  =  0 )
5954, 58eqtrd 2656 . . 3  |-  ( ph  ->  ( if ( ( P  -  1 )  <  ( C ` 
0 ) ,  0 ,  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `  ( ( P  - 
1 )  -  ( C `  0 )
) ) )  x.  ( J ^ (
( P  -  1 )  -  ( C `
 0 ) ) ) ) )  x. 
prod_ j  e.  (
1 ... M ) if ( P  <  ( C `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) ) )  =  0 )
6059oveq2d 6666 . 2  |-  ( ph  ->  ( ( ( ! `
 N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  ( C `
 j ) ) )  x.  ( if ( ( P  - 
1 )  <  ( C `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( C ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( C `  0 ) ) ) ) )  x.  prod_ j  e.  ( 1 ... M ) if ( P  < 
( C `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( C `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( C `  j ) ) ) ) ) ) )  =  ( ( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `
 ( C `  j ) ) )  x.  0 ) )
61 etransclem15.n . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
6261faccld 13071 . . . . 5  |-  ( ph  ->  ( ! `  N
)  e.  NN )
6362nncnd 11036 . . . 4  |-  ( ph  ->  ( ! `  N
)  e.  CC )
64 fzfid 12772 . . . . 5  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
65 fzssnn0 39533 . . . . . . . 8  |-  ( 0 ... N )  C_  NN0
6614ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  ( C `  j )  e.  ( 0 ... N
) )
6765, 66sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  ( C `  j )  e.  NN0 )
6867faccld 13071 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  ( ! `  ( C `  j ) )  e.  NN )
6968nncnd 11036 . . . . 5  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  ( ! `  ( C `  j ) )  e.  CC )
7064, 69fprodcl 14682 . . . 4  |-  ( ph  ->  prod_ j  e.  ( 0 ... M ) ( ! `  ( C `  j )
)  e.  CC )
7168nnne0d 11065 . . . . 5  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  ( ! `  ( C `  j ) )  =/=  0 )
7264, 69, 71fprodn0 14709 . . . 4  |-  ( ph  ->  prod_ j  e.  ( 0 ... M ) ( ! `  ( C `  j )
)  =/=  0 )
7363, 70, 72divcld 10801 . . 3  |-  ( ph  ->  ( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `
 ( C `  j ) ) )  e.  CC )
7473mul01d 10235 . 2  |-  ( ph  ->  ( ( ( ! `
 N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  ( C `
 j ) ) )  x.  0 )  =  0 )
752, 60, 743eqtrd 2660 1  |-  ( ph  ->  T  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   !cfa 13060   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  etransclem28  40479
  Copyright terms: Public domain W3C validator