MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem3 Structured version   Visualization version   Unicode version

Theorem evlslem3 19514
Description: Lemma for evlseu 19516. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
evlslem1.p  |-  P  =  ( I mPoly  R )
evlslem1.b  |-  B  =  ( Base `  P
)
evlslem1.c  |-  C  =  ( Base `  S
)
evlslem1.k  |-  K  =  ( Base `  R
)
evlslem1.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
evlslem1.t  |-  T  =  (mulGrp `  S )
evlslem1.x  |-  .^  =  (.g
`  T )
evlslem1.m  |-  .x.  =  ( .r `  S )
evlslem1.v  |-  V  =  ( I mVar  R )
evlslem1.e  |-  E  =  ( p  e.  B  |->  ( S  gsumg  ( b  e.  D  |->  ( ( F `  ( p `  b
) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) ) )
evlslem1.i  |-  ( ph  ->  I  e.  _V )
evlslem1.r  |-  ( ph  ->  R  e.  CRing )
evlslem1.s  |-  ( ph  ->  S  e.  CRing )
evlslem1.f  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
evlslem1.g  |-  ( ph  ->  G : I --> C )
evlslem3.z  |-  .0.  =  ( 0g `  R )
evlslem3.k  |-  ( ph  ->  A  e.  D )
evlslem3.q  |-  ( ph  ->  H  e.  K )
Assertion
Ref Expression
evlslem3  |-  ( ph  ->  ( E `  (
x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) )  =  ( ( F `  H )  .x.  ( T  gsumg  ( A  oF 
.^  G ) ) ) )
Distinct variable groups:    p, b, x,  .0.    B, p    C, b    D, b, p, x    F, b, p    .^ , b, p   
h, b, A, p, x    h, I    x, K    ph, b, x    G, b, p    H, b, p, x    S, b, p    T, b, p    .x. , b, p   
x, R
Allowed substitution hints:    ph( h, p)    B( x, h, b)    C( x, h, p)    D( h)    P( x, h, p, b)    R( h, p, b)    S( x, h)    T( x, h)    .x. ( x, h)    E( x, h, p, b)    .^ ( x, h)    F( x, h)    G( x, h)    H( h)    I( x, p, b)    K( h, p, b)    V( x, h, p, b)    .0. ( h)

Proof of Theorem evlslem3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem1.p . . . 4  |-  P  =  ( I mPoly  R )
2 evlslem1.d . . . 4  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
3 evlslem3.z . . . 4  |-  .0.  =  ( 0g `  R )
4 evlslem1.k . . . 4  |-  K  =  ( Base `  R
)
5 evlslem1.i . . . 4  |-  ( ph  ->  I  e.  _V )
6 evlslem1.r . . . . 5  |-  ( ph  ->  R  e.  CRing )
7 crngring 18558 . . . . 5  |-  ( R  e.  CRing  ->  R  e.  Ring )
86, 7syl 17 . . . 4  |-  ( ph  ->  R  e.  Ring )
9 evlslem1.b . . . 4  |-  B  =  ( Base `  P
)
10 evlslem3.q . . . 4  |-  ( ph  ->  H  e.  K )
11 evlslem3.k . . . 4  |-  ( ph  ->  A  e.  D )
121, 2, 3, 4, 5, 8, 9, 10, 11mplmon2cl 19500 . . 3  |-  ( ph  ->  ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) )  e.  B
)
13 fveq1 6190 . . . . . . . 8  |-  ( p  =  ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) )  -> 
( p `  b
)  =  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b
) )
1413fveq2d 6195 . . . . . . 7  |-  ( p  =  ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) )  -> 
( F `  (
p `  b )
)  =  ( F `
 ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  )
) `  b )
) )
1514oveq1d 6665 . . . . . 6  |-  ( p  =  ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) )  -> 
( ( F `  ( p `  b
) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) )  =  ( ( F `  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b
) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) )
1615mpteq2dv 4745 . . . . 5  |-  ( p  =  ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) )  -> 
( b  e.  D  |->  ( ( F `  ( p `  b
) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) )  =  ( b  e.  D  |->  ( ( F `  (
( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b
) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) )
1716oveq2d 6666 . . . 4  |-  ( p  =  ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) )  -> 
( S  gsumg  ( b  e.  D  |->  ( ( F `  ( p `  b
) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) )  =  ( S  gsumg  ( b  e.  D  |->  ( ( F `  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) ) )
18 evlslem1.e . . . 4  |-  E  =  ( p  e.  B  |->  ( S  gsumg  ( b  e.  D  |->  ( ( F `  ( p `  b
) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) ) )
19 ovex 6678 . . . 4  |-  ( S 
gsumg  ( b  e.  D  |->  ( ( F `  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) )  e. 
_V
2017, 18, 19fvmpt 6282 . . 3  |-  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) )  e.  B  ->  ( E `  (
x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) )  =  ( S  gsumg  ( b  e.  D  |->  ( ( F `  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) ) )
2112, 20syl 17 . 2  |-  ( ph  ->  ( E `  (
x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) )  =  ( S  gsumg  ( b  e.  D  |->  ( ( F `  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) ) )
22 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  b  e.  D )  ->  b  e.  D )
23 fvex 6201 . . . . . . . . . . . 12  |-  ( 0g
`  R )  e. 
_V
243, 23eqeltri 2697 . . . . . . . . . . 11  |-  .0.  e.  _V
2524a1i 11 . . . . . . . . . 10  |-  ( ph  ->  .0.  e.  _V )
26 ifexg 4157 . . . . . . . . . 10  |-  ( ( H  e.  K  /\  .0.  e.  _V )  ->  if ( b  =  A ,  H ,  .0.  )  e.  _V )
2710, 25, 26syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  if ( b  =  A ,  H ,  .0.  )  e.  _V )
2827adantr 481 . . . . . . . 8  |-  ( (
ph  /\  b  e.  D )  ->  if ( b  =  A ,  H ,  .0.  )  e.  _V )
29 eqeq1 2626 . . . . . . . . . 10  |-  ( x  =  b  ->  (
x  =  A  <->  b  =  A ) )
3029ifbid 4108 . . . . . . . . 9  |-  ( x  =  b  ->  if ( x  =  A ,  H ,  .0.  )  =  if ( b  =  A ,  H ,  .0.  ) )
31 eqid 2622 . . . . . . . . 9  |-  ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  )
)  =  ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  )
)
3230, 31fvmptg 6280 . . . . . . . 8  |-  ( ( b  e.  D  /\  if ( b  =  A ,  H ,  .0.  )  e.  _V )  ->  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b )  =  if ( b  =  A ,  H ,  .0.  ) )
3322, 28, 32syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  b  e.  D )  ->  (
( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b
)  =  if ( b  =  A ,  H ,  .0.  )
)
3433fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  b  e.  D )  ->  ( F `  ( (
x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b
) )  =  ( F `  if ( b  =  A ,  H ,  .0.  )
) )
3534oveq1d 6665 . . . . 5  |-  ( (
ph  /\  b  e.  D )  ->  (
( F `  (
( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b
) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) )  =  ( ( F `  if ( b  =  A ,  H ,  .0.  )
)  .x.  ( T  gsumg  ( b  oF  .^  G ) ) ) )
3635mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( b  e.  D  |->  ( ( F `  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) )  =  ( b  e.  D  |->  ( ( F `  if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) )
3736oveq2d 6666 . . 3  |-  ( ph  ->  ( S  gsumg  ( b  e.  D  |->  ( ( F `  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) )  =  ( S  gsumg  ( b  e.  D  |->  ( ( F `  if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) ) )
38 evlslem1.c . . . 4  |-  C  =  ( Base `  S
)
39 eqid 2622 . . . 4  |-  ( 0g
`  S )  =  ( 0g `  S
)
40 evlslem1.s . . . . . 6  |-  ( ph  ->  S  e.  CRing )
41 crngring 18558 . . . . . 6  |-  ( S  e.  CRing  ->  S  e.  Ring )
4240, 41syl 17 . . . . 5  |-  ( ph  ->  S  e.  Ring )
43 ringmnd 18556 . . . . 5  |-  ( S  e.  Ring  ->  S  e. 
Mnd )
4442, 43syl 17 . . . 4  |-  ( ph  ->  S  e.  Mnd )
45 ovex 6678 . . . . . 6  |-  ( NN0 
^m  I )  e. 
_V
462, 45rabex2 4815 . . . . 5  |-  D  e. 
_V
4746a1i 11 . . . 4  |-  ( ph  ->  D  e.  _V )
4842adantr 481 . . . . . 6  |-  ( (
ph  /\  b  e.  D )  ->  S  e.  Ring )
49 evlslem1.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
504, 38rhmf 18726 . . . . . . . . 9  |-  ( F  e.  ( R RingHom  S
)  ->  F : K
--> C )
5149, 50syl 17 . . . . . . . 8  |-  ( ph  ->  F : K --> C )
524, 3ring0cl 18569 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  .0.  e.  K )
538, 52syl 17 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  K )
5410, 53ifcld 4131 . . . . . . . 8  |-  ( ph  ->  if ( b  =  A ,  H ,  .0.  )  e.  K
)
5551, 54ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( F `  if ( b  =  A ,  H ,  .0.  ) )  e.  C
)
5655adantr 481 . . . . . 6  |-  ( (
ph  /\  b  e.  D )  ->  ( F `  if (
b  =  A ,  H ,  .0.  )
)  e.  C )
57 evlslem1.t . . . . . . . 8  |-  T  =  (mulGrp `  S )
5857, 38mgpbas 18495 . . . . . . 7  |-  C  =  ( Base `  T
)
59 eqid 2622 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
6057crngmgp 18555 . . . . . . . . 9  |-  ( S  e.  CRing  ->  T  e. CMnd )
6140, 60syl 17 . . . . . . . 8  |-  ( ph  ->  T  e. CMnd )
6261adantr 481 . . . . . . 7  |-  ( (
ph  /\  b  e.  D )  ->  T  e. CMnd )
635adantr 481 . . . . . . 7  |-  ( (
ph  /\  b  e.  D )  ->  I  e.  _V )
64 cmnmnd 18208 . . . . . . . . . . 11  |-  ( T  e. CMnd  ->  T  e.  Mnd )
6561, 64syl 17 . . . . . . . . . 10  |-  ( ph  ->  T  e.  Mnd )
6665ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  b  e.  D )  /\  (
y  e.  NN0  /\  z  e.  C )
)  ->  T  e.  Mnd )
67 simprl 794 . . . . . . . . 9  |-  ( ( ( ph  /\  b  e.  D )  /\  (
y  e.  NN0  /\  z  e.  C )
)  ->  y  e.  NN0 )
68 simprr 796 . . . . . . . . 9  |-  ( ( ( ph  /\  b  e.  D )  /\  (
y  e.  NN0  /\  z  e.  C )
)  ->  z  e.  C )
69 evlslem1.x . . . . . . . . . 10  |-  .^  =  (.g
`  T )
7058, 69mulgnn0cl 17558 . . . . . . . . 9  |-  ( ( T  e.  Mnd  /\  y  e.  NN0  /\  z  e.  C )  ->  (
y  .^  z )  e.  C )
7166, 67, 68, 70syl3anc 1326 . . . . . . . 8  |-  ( ( ( ph  /\  b  e.  D )  /\  (
y  e.  NN0  /\  z  e.  C )
)  ->  ( y  .^  z )  e.  C
)
722psrbagf 19365 . . . . . . . . 9  |-  ( ( I  e.  _V  /\  b  e.  D )  ->  b : I --> NN0 )
735, 72sylan 488 . . . . . . . 8  |-  ( (
ph  /\  b  e.  D )  ->  b : I --> NN0 )
74 evlslem1.g . . . . . . . . 9  |-  ( ph  ->  G : I --> C )
7574adantr 481 . . . . . . . 8  |-  ( (
ph  /\  b  e.  D )  ->  G : I --> C )
76 inidm 3822 . . . . . . . 8  |-  ( I  i^i  I )  =  I
7771, 73, 75, 63, 63, 76off 6912 . . . . . . 7  |-  ( (
ph  /\  b  e.  D )  ->  (
b  oF  .^  G ) : I --> C )
78 ovex 6678 . . . . . . . . 9  |-  ( b  oF  .^  G
)  e.  _V
7978a1i 11 . . . . . . . 8  |-  ( (
ph  /\  b  e.  D )  ->  (
b  oF  .^  G )  e.  _V )
8077ffund 6049 . . . . . . . 8  |-  ( (
ph  /\  b  e.  D )  ->  Fun  ( b  oF 
.^  G ) )
81 fvex 6201 . . . . . . . . 9  |-  ( 0g
`  T )  e. 
_V
8281a1i 11 . . . . . . . 8  |-  ( (
ph  /\  b  e.  D )  ->  ( 0g `  T )  e. 
_V )
832psrbag 19364 . . . . . . . . . 10  |-  ( I  e.  _V  ->  (
b  e.  D  <->  ( b : I --> NN0  /\  ( `' b " NN )  e.  Fin )
) )
845, 83syl 17 . . . . . . . . 9  |-  ( ph  ->  ( b  e.  D  <->  ( b : I --> NN0  /\  ( `' b " NN )  e.  Fin )
) )
8584simplbda 654 . . . . . . . 8  |-  ( (
ph  /\  b  e.  D )  ->  ( `' b " NN )  e.  Fin )
8673ffnd 6046 . . . . . . . . . . . 12  |-  ( (
ph  /\  b  e.  D )  ->  b  Fn  I )
8786adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  -> 
b  Fn  I )
8874ffnd 6046 . . . . . . . . . . . 12  |-  ( ph  ->  G  Fn  I )
8988ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  ->  G  Fn  I )
905ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  ->  I  e.  _V )
91 eldifi 3732 . . . . . . . . . . . 12  |-  ( y  e.  ( I  \ 
( `' b " NN ) )  ->  y  e.  I )
9291adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  -> 
y  e.  I )
93 fnfvof 6911 . . . . . . . . . . 11  |-  ( ( ( b  Fn  I  /\  G  Fn  I
)  /\  ( I  e.  _V  /\  y  e.  I ) )  -> 
( ( b  oF  .^  G ) `  y )  =  ( ( b `  y
)  .^  ( G `  y ) ) )
9487, 89, 90, 92, 93syl22anc 1327 . . . . . . . . . 10  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  -> 
( ( b  oF  .^  G ) `  y )  =  ( ( b `  y
)  .^  ( G `  y ) ) )
95 eldifn 3733 . . . . . . . . . . . . . 14  |-  ( y  e.  ( I  \ 
( `' b " NN ) )  ->  -.  y  e.  ( `' b " NN ) )
9695adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  ->  -.  y  e.  ( `' b " NN ) )
9791ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  b  e.  D )  /\  y  e.  (
I  \  ( `' b " NN ) ) )  /\  ( b `
 y )  e.  NN )  ->  y  e.  I )
98 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  b  e.  D )  /\  y  e.  (
I  \  ( `' b " NN ) ) )  /\  ( b `
 y )  e.  NN )  ->  (
b `  y )  e.  NN )
9986ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  b  e.  D )  /\  y  e.  (
I  \  ( `' b " NN ) ) )  /\  ( b `
 y )  e.  NN )  ->  b  Fn  I )
100 elpreima 6337 . . . . . . . . . . . . . . 15  |-  ( b  Fn  I  ->  (
y  e.  ( `' b " NN )  <-> 
( y  e.  I  /\  ( b `  y
)  e.  NN ) ) )
10199, 100syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  b  e.  D )  /\  y  e.  (
I  \  ( `' b " NN ) ) )  /\  ( b `
 y )  e.  NN )  ->  (
y  e.  ( `' b " NN )  <-> 
( y  e.  I  /\  ( b `  y
)  e.  NN ) ) )
10297, 98, 101mpbir2and 957 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  b  e.  D )  /\  y  e.  (
I  \  ( `' b " NN ) ) )  /\  ( b `
 y )  e.  NN )  ->  y  e.  ( `' b " NN ) )
10396, 102mtand 691 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  ->  -.  ( b `  y
)  e.  NN )
104 ffvelrn 6357 . . . . . . . . . . . . . 14  |-  ( ( b : I --> NN0  /\  y  e.  I )  ->  ( b `  y
)  e.  NN0 )
10573, 91, 104syl2an 494 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  -> 
( b `  y
)  e.  NN0 )
106 elnn0 11294 . . . . . . . . . . . . 13  |-  ( ( b `  y )  e.  NN0  <->  ( ( b `
 y )  e.  NN  \/  ( b `
 y )  =  0 ) )
107105, 106sylib 208 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  -> 
( ( b `  y )  e.  NN  \/  ( b `  y
)  =  0 ) )
108 orel1 397 . . . . . . . . . . . 12  |-  ( -.  ( b `  y
)  e.  NN  ->  ( ( ( b `  y )  e.  NN  \/  ( b `  y
)  =  0 )  ->  ( b `  y )  =  0 ) )
109103, 107, 108sylc 65 . . . . . . . . . . 11  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  -> 
( b `  y
)  =  0 )
110109oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  -> 
( ( b `  y )  .^  ( G `  y )
)  =  ( 0 
.^  ( G `  y ) ) )
111 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( G : I --> C  /\  y  e.  I )  ->  ( G `  y
)  e.  C )
11275, 91, 111syl2an 494 . . . . . . . . . . 11  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  -> 
( G `  y
)  e.  C )
11358, 59, 69mulg0 17546 . . . . . . . . . . 11  |-  ( ( G `  y )  e.  C  ->  (
0  .^  ( G `  y ) )  =  ( 0g `  T
) )
114112, 113syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  -> 
( 0  .^  ( G `  y )
)  =  ( 0g
`  T ) )
11594, 110, 1143eqtrd 2660 . . . . . . . . 9  |-  ( ( ( ph  /\  b  e.  D )  /\  y  e.  ( I  \  ( `' b " NN ) ) )  -> 
( ( b  oF  .^  G ) `  y )  =  ( 0g `  T ) )
11677, 115suppss 7325 . . . . . . . 8  |-  ( (
ph  /\  b  e.  D )  ->  (
( b  oF 
.^  G ) supp  ( 0g `  T ) ) 
C_  ( `' b
" NN ) )
117 suppssfifsupp 8290 . . . . . . . 8  |-  ( ( ( ( b  oF  .^  G )  e.  _V  /\  Fun  (
b  oF  .^  G )  /\  ( 0g `  T )  e. 
_V )  /\  (
( `' b " NN )  e.  Fin  /\  ( ( b  oF  .^  G ) supp  ( 0g `  T ) )  C_  ( `' b " NN ) ) )  ->  ( b  oF  .^  G ) finSupp 
( 0g `  T
) )
11879, 80, 82, 85, 116, 117syl32anc 1334 . . . . . . 7  |-  ( (
ph  /\  b  e.  D )  ->  (
b  oF  .^  G ) finSupp  ( 0g `  T ) )
11958, 59, 62, 63, 77, 118gsumcl 18316 . . . . . 6  |-  ( (
ph  /\  b  e.  D )  ->  ( T  gsumg  ( b  oF 
.^  G ) )  e.  C )
120 evlslem1.m . . . . . . 7  |-  .x.  =  ( .r `  S )
12138, 120ringcl 18561 . . . . . 6  |-  ( ( S  e.  Ring  /\  ( F `  if (
b  =  A ,  H ,  .0.  )
)  e.  C  /\  ( T  gsumg  ( b  oF 
.^  G ) )  e.  C )  -> 
( ( F `  if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) )  e.  C )
12248, 56, 119, 121syl3anc 1326 . . . . 5  |-  ( (
ph  /\  b  e.  D )  ->  (
( F `  if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) )  e.  C )
123 eqid 2622 . . . . 5  |-  ( b  e.  D  |->  ( ( F `  if ( b  =  A ,  H ,  .0.  )
)  .x.  ( T  gsumg  ( b  oF  .^  G ) ) ) )  =  ( b  e.  D  |->  ( ( F `  if ( b  =  A ,  H ,  .0.  )
)  .x.  ( T  gsumg  ( b  oF  .^  G ) ) ) )
124122, 123fmptd 6385 . . . 4  |-  ( ph  ->  ( b  e.  D  |->  ( ( F `  if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) : D --> C )
125 eldifsni 4320 . . . . . . . . . . . 12  |-  ( b  e.  ( D  \  { A } )  -> 
b  =/=  A )
126125neneqd 2799 . . . . . . . . . . 11  |-  ( b  e.  ( D  \  { A } )  ->  -.  b  =  A
)
127126iffalsed 4097 . . . . . . . . . 10  |-  ( b  e.  ( D  \  { A } )  ->  if ( b  =  A ,  H ,  .0.  )  =  .0.  )
128127adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  ( D  \  { A } ) )  ->  if ( b  =  A ,  H ,  .0.  )  =  .0.  )
129128fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  b  e.  ( D  \  { A } ) )  -> 
( F `  if ( b  =  A ,  H ,  .0.  ) )  =  ( F `  .0.  )
)
130 rhmghm 18725 . . . . . . . . . . 11  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
13149, 130syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( R 
GrpHom  S ) )
1323, 39ghmid 17666 . . . . . . . . . 10  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  .0.  )  =  ( 0g `  S ) )
133131, 132syl 17 . . . . . . . . 9  |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  S ) )
134133adantr 481 . . . . . . . 8  |-  ( (
ph  /\  b  e.  ( D  \  { A } ) )  -> 
( F `  .0.  )  =  ( 0g `  S ) )
135129, 134eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  b  e.  ( D  \  { A } ) )  -> 
( F `  if ( b  =  A ,  H ,  .0.  ) )  =  ( 0g `  S ) )
136135oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  b  e.  ( D  \  { A } ) )  -> 
( ( F `  if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) )  =  ( ( 0g `  S ) 
.x.  ( T  gsumg  ( b  oF  .^  G
) ) ) )
13742adantr 481 . . . . . . 7  |-  ( (
ph  /\  b  e.  ( D  \  { A } ) )  ->  S  e.  Ring )
138 eldifi 3732 . . . . . . . 8  |-  ( b  e.  ( D  \  { A } )  -> 
b  e.  D )
139138, 119sylan2 491 . . . . . . 7  |-  ( (
ph  /\  b  e.  ( D  \  { A } ) )  -> 
( T  gsumg  ( b  oF 
.^  G ) )  e.  C )
14038, 120, 39ringlz 18587 . . . . . . 7  |-  ( ( S  e.  Ring  /\  ( T  gsumg  ( b  oF 
.^  G ) )  e.  C )  -> 
( ( 0g `  S )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) )  =  ( 0g
`  S ) )
141137, 139, 140syl2anc 693 . . . . . 6  |-  ( (
ph  /\  b  e.  ( D  \  { A } ) )  -> 
( ( 0g `  S )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) )  =  ( 0g
`  S ) )
142136, 141eqtrd 2656 . . . . 5  |-  ( (
ph  /\  b  e.  ( D  \  { A } ) )  -> 
( ( F `  if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) )  =  ( 0g
`  S ) )
143142, 47suppss2 7329 . . . 4  |-  ( ph  ->  ( ( b  e.  D  |->  ( ( F `
 if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) supp  ( 0g
`  S ) ) 
C_  { A }
)
14438, 39, 44, 47, 11, 124, 143gsumpt 18361 . . 3  |-  ( ph  ->  ( S  gsumg  ( b  e.  D  |->  ( ( F `  if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) )  =  ( ( b  e.  D  |->  ( ( F `
 if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) `  A
) )
14537, 144eqtrd 2656 . 2  |-  ( ph  ->  ( S  gsumg  ( b  e.  D  |->  ( ( F `  ( ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) `  b ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) )  =  ( ( b  e.  D  |->  ( ( F `
 if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) `  A
) )
146 iftrue 4092 . . . . . 6  |-  ( b  =  A  ->  if ( b  =  A ,  H ,  .0.  )  =  H )
147146fveq2d 6195 . . . . 5  |-  ( b  =  A  ->  ( F `  if (
b  =  A ,  H ,  .0.  )
)  =  ( F `
 H ) )
148 oveq1 6657 . . . . . 6  |-  ( b  =  A  ->  (
b  oF  .^  G )  =  ( A  oF  .^  G ) )
149148oveq2d 6666 . . . . 5  |-  ( b  =  A  ->  ( T  gsumg  ( b  oF 
.^  G ) )  =  ( T  gsumg  ( A  oF  .^  G
) ) )
150147, 149oveq12d 6668 . . . 4  |-  ( b  =  A  ->  (
( F `  if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) )  =  ( ( F `  H ) 
.x.  ( T  gsumg  ( A  oF  .^  G
) ) ) )
151 ovex 6678 . . . 4  |-  ( ( F `  H ) 
.x.  ( T  gsumg  ( A  oF  .^  G
) ) )  e. 
_V
152150, 123, 151fvmpt 6282 . . 3  |-  ( A  e.  D  ->  (
( b  e.  D  |->  ( ( F `  if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) `  A
)  =  ( ( F `  H ) 
.x.  ( T  gsumg  ( A  oF  .^  G
) ) ) )
15311, 152syl 17 . 2  |-  ( ph  ->  ( ( b  e.  D  |->  ( ( F `
 if ( b  =  A ,  H ,  .0.  ) )  .x.  ( T  gsumg  ( b  oF 
.^  G ) ) ) ) `  A
)  =  ( ( F `  H ) 
.x.  ( T  gsumg  ( A  oF  .^  G
) ) ) )
15421, 145, 1533eqtrd 2660 1  |-  ( ph  ->  ( E `  (
x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) )  =  ( ( F `  H )  .x.  ( T  gsumg  ( A  oF 
.^  G ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   supp csupp 7295    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275   0cc0 9936   NNcn 11020   NN0cn0 11292   Basecbs 15857   .rcmulr 15942   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  .gcmg 17540    GrpHom cghm 17657  CMndccmn 18193  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548   RingHom crh 18712   mVar cmvr 19352   mPoly cmpl 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-rnghom 18715  df-lmod 18865  df-lss 18933  df-psr 19356  df-mpl 19358
This theorem is referenced by:  evlslem1  19515
  Copyright terms: Public domain W3C validator