Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem36 Structured version   Visualization version   Unicode version

Theorem fourierdlem36 40360
Description:  F is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem36.a  |-  ( ph  ->  A  e.  Fin )
fourierdlem36.assr  |-  ( ph  ->  A  C_  RR )
fourierdlem36.f  |-  F  =  ( iota f f 
Isom  <  ,  <  (
( 0 ... N
) ,  A ) )
fourierdlem36.n  |-  N  =  ( ( # `  A
)  -  1 )
Assertion
Ref Expression
fourierdlem36  |-  ( ph  ->  F  Isom  <  ,  <  ( ( 0 ... N
) ,  A ) )
Distinct variable groups:    A, f    f, F    f, N    ph, f

Proof of Theorem fourierdlem36
StepHypRef Expression
1 fourierdlem36.f . . 3  |-  F  =  ( iota f f 
Isom  <  ,  <  (
( 0 ... N
) ,  A ) )
2 fourierdlem36.a . . . . . 6  |-  ( ph  ->  A  e.  Fin )
3 fourierdlem36.assr . . . . . . 7  |-  ( ph  ->  A  C_  RR )
4 ltso 10118 . . . . . . 7  |-  <  Or  RR
5 soss 5053 . . . . . . 7  |-  ( A 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  A ) )
63, 4, 5mpisyl 21 . . . . . 6  |-  ( ph  ->  <  Or  A )
7 0zd 11389 . . . . . 6  |-  ( ph  ->  0  e.  ZZ )
8 eqid 2622 . . . . . 6  |-  ( (
# `  A )  +  ( 0  -  1 ) )  =  ( ( # `  A
)  +  ( 0  -  1 ) )
92, 6, 7, 8fzisoeu 39514 . . . . 5  |-  ( ph  ->  E! f  f  Isom  <  ,  <  ( ( 0 ... ( ( # `  A )  +  ( 0  -  1 ) ) ) ,  A
) )
10 hashcl 13147 . . . . . . . . . . . 12  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
112, 10syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  A
)  e.  NN0 )
1211nn0cnd 11353 . . . . . . . . . 10  |-  ( ph  ->  ( # `  A
)  e.  CC )
13 1cnd 10056 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
1412, 13negsubd 10398 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  A
)  +  -u 1
)  =  ( (
# `  A )  -  1 ) )
15 df-neg 10269 . . . . . . . . . . 11  |-  -u 1  =  ( 0  -  1 )
1615eqcomi 2631 . . . . . . . . . 10  |-  ( 0  -  1 )  = 
-u 1
1716oveq2i 6661 . . . . . . . . 9  |-  ( (
# `  A )  +  ( 0  -  1 ) )  =  ( ( # `  A
)  +  -u 1
)
18 fourierdlem36.n . . . . . . . . 9  |-  N  =  ( ( # `  A
)  -  1 )
1914, 17, 183eqtr4g 2681 . . . . . . . 8  |-  ( ph  ->  ( ( # `  A
)  +  ( 0  -  1 ) )  =  N )
2019oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( 0 ... (
( # `  A )  +  ( 0  -  1 ) ) )  =  ( 0 ... N ) )
21 isoeq4 6570 . . . . . . 7  |-  ( ( 0 ... ( (
# `  A )  +  ( 0  -  1 ) ) )  =  ( 0 ... N )  ->  (
f  Isom  <  ,  <  ( ( 0 ... (
( # `  A )  +  ( 0  -  1 ) ) ) ,  A )  <->  f  Isom  <  ,  <  ( ( 0 ... N ) ,  A ) ) )
2220, 21syl 17 . . . . . 6  |-  ( ph  ->  ( f  Isom  <  ,  <  ( ( 0 ... ( ( # `  A )  +  ( 0  -  1 ) ) ) ,  A
)  <->  f  Isom  <  ,  <  ( ( 0 ... N ) ,  A ) ) )
2322eubidv 2490 . . . . 5  |-  ( ph  ->  ( E! f  f 
Isom  <  ,  <  (
( 0 ... (
( # `  A )  +  ( 0  -  1 ) ) ) ,  A )  <->  E! f 
f  Isom  <  ,  <  ( ( 0 ... N
) ,  A ) ) )
249, 23mpbid 222 . . . 4  |-  ( ph  ->  E! f  f  Isom  <  ,  <  ( ( 0 ... N ) ,  A ) )
25 iotacl 5874 . . . 4  |-  ( E! f  f  Isom  <  ,  <  ( ( 0 ... N ) ,  A )  ->  ( iota f f  Isom  <  ,  <  ( ( 0 ... N ) ,  A ) )  e. 
{ f  |  f 
Isom  <  ,  <  (
( 0 ... N
) ,  A ) } )
2624, 25syl 17 . . 3  |-  ( ph  ->  ( iota f f 
Isom  <  ,  <  (
( 0 ... N
) ,  A ) )  e.  { f  |  f  Isom  <  ,  <  ( ( 0 ... N ) ,  A ) } )
271, 26syl5eqel 2705 . 2  |-  ( ph  ->  F  e.  { f  |  f  Isom  <  ,  <  ( ( 0 ... N ) ,  A ) } )
28 iotaex 5868 . . . 4  |-  ( iota f f  Isom  <  ,  <  ( ( 0 ... N ) ,  A ) )  e. 
_V
291, 28eqeltri 2697 . . 3  |-  F  e. 
_V
30 isoeq1 6567 . . 3  |-  ( f  =  F  ->  (
f  Isom  <  ,  <  ( ( 0 ... N
) ,  A )  <-> 
F  Isom  <  ,  <  ( ( 0 ... N
) ,  A ) ) )
3129, 30elab 3350 . 2  |-  ( F  e.  { f  |  f  Isom  <  ,  <  ( ( 0 ... N
) ,  A ) }  <->  F  Isom  <  ,  <  ( ( 0 ... N ) ,  A
) )
3227, 31sylib 208 1  |-  ( ph  ->  F  Isom  <  ,  <  ( ( 0 ... N
) ,  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   E!weu 2470   {cab 2608   _Vcvv 3200    C_ wss 3574    Or wor 5034   iotacio 5849   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   -ucneg 10267   NN0cn0 11292   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  fourierdlem50  40373  fourierdlem51  40374  fourierdlem52  40375  fourierdlem54  40377  fourierdlem76  40399  fourierdlem102  40425  fourierdlem103  40426  fourierdlem104  40427  fourierdlem114  40437
  Copyright terms: Public domain W3C validator