Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem114 Structured version   Visualization version   Unicode version

Theorem fourierdlem114 40437
Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem114.f  |-  ( ph  ->  F : RR --> RR )
fourierdlem114.t  |-  T  =  ( 2  x.  pi )
fourierdlem114.per  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
fourierdlem114.g  |-  G  =  ( ( RR  _D  F )  |`  ( -u pi (,) pi ) )
fourierdlem114.dmdv  |-  ( ph  ->  ( ( -u pi (,) pi )  \  dom  G )  e.  Fin )
fourierdlem114.gcn  |-  ( ph  ->  G  e.  ( dom 
G -cn-> CC ) )
fourierdlem114.rlim  |-  ( (
ph  /\  x  e.  ( ( -u pi [,) pi )  \  dom  G ) )  ->  (
( G  |`  (
x (,) +oo )
) lim CC  x )  =/=  (/) )
fourierdlem114.llim  |-  ( (
ph  /\  x  e.  ( ( -u pi (,] pi )  \  dom  G ) )  ->  (
( G  |`  ( -oo (,) x ) ) lim
CC  x )  =/=  (/) )
fourierdlem114.x  |-  ( ph  ->  X  e.  RR )
fourierdlem114.l  |-  ( ph  ->  L  e.  ( ( F  |`  ( -oo (,) X ) ) lim CC  X ) )
fourierdlem114.r  |-  ( ph  ->  R  e.  ( ( F  |`  ( X (,) +oo ) ) lim CC  X ) )
fourierdlem114.a  |-  A  =  ( n  e.  NN0  |->  ( S. ( -u pi (,) pi ) ( ( F `  x )  x.  ( cos `  (
n  x.  x ) ) )  _d x  /  pi ) )
fourierdlem114.b  |-  B  =  ( n  e.  NN  |->  ( S. ( -u pi (,) pi ) ( ( F `  x )  x.  ( sin `  (
n  x.  x ) ) )  _d x  /  pi ) )
fourierdlem114.s  |-  S  =  ( n  e.  NN  |->  ( ( ( A `
 n )  x.  ( cos `  (
n  x.  X ) ) )  +  ( ( B `  n
)  x.  ( sin `  ( n  x.  X
) ) ) ) )
fourierdlem114.p  |-  P  =  ( n  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... n ) )  |  ( ( ( p `
 0 )  = 
-u pi  /\  (
p `  n )  =  pi )  /\  A. i  e.  ( 0..^ n ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
fourierdlem114.e  |-  E  =  ( x  e.  RR  |->  ( x  +  (
( |_ `  (
( pi  -  x
)  /  T ) )  x.  T ) ) )
fourierdlem114.h  |-  H  =  ( { -u pi ,  pi ,  ( E `
 X ) }  u.  ( ( -u pi [,] pi )  \  dom  G ) )
fourierdlem114.m  |-  M  =  ( ( # `  H
)  -  1 )
fourierdlem114.q  |-  Q  =  ( iota g g 
Isom  <  ,  <  (
( 0 ... M
) ,  H ) )
Assertion
Ref Expression
fourierdlem114  |-  ( ph  ->  (  seq 1 (  +  ,  S )  ~~>  ( ( ( L  +  R )  / 
2 )  -  (
( A `  0
)  /  2 ) )  /\  ( ( ( A `  0
)  /  2 )  +  sum_ n  e.  NN  ( ( ( A `
 n )  x.  ( cos `  (
n  x.  X ) ) )  +  ( ( B `  n
)  x.  ( sin `  ( n  x.  X
) ) ) ) )  =  ( ( L  +  R )  /  2 ) ) )
Distinct variable groups:    A, n    B, n    x, E    i, F, n, x    i, G, x    g, H    i, L, n    g, M    i, M, n, p    x, M    Q, g    Q, i, n, p    x, Q    R, i, n    T, i, n, p    x, T    i, X, n, p    x, X    ph, g    ph, i, n, x
Allowed substitution hints:    ph( p)    A( x, g, i, p)    B( x, g, i, p)    P( x, g, i, n, p)    R( x, g, p)    S( x, g, i, n, p)    T( g)    E( g, i, n, p)    F( g, p)    G( g, n, p)    H( x, i, n, p)    L( x, g, p)    X( g)

Proof of Theorem fourierdlem114
StepHypRef Expression
1 fourierdlem114.f . 2  |-  ( ph  ->  F : RR --> RR )
2 fourierdlem114.t . 2  |-  T  =  ( 2  x.  pi )
3 fourierdlem114.per . 2  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
4 fourierdlem114.x . 2  |-  ( ph  ->  X  e.  RR )
5 fourierdlem114.l . 2  |-  ( ph  ->  L  e.  ( ( F  |`  ( -oo (,) X ) ) lim CC  X ) )
6 fourierdlem114.r . 2  |-  ( ph  ->  R  e.  ( ( F  |`  ( X (,) +oo ) ) lim CC  X ) )
7 fourierdlem114.p . 2  |-  P  =  ( n  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... n ) )  |  ( ( ( p `
 0 )  = 
-u pi  /\  (
p `  n )  =  pi )  /\  A. i  e.  ( 0..^ n ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
8 fourierdlem114.m . . 3  |-  M  =  ( ( # `  H
)  -  1 )
9 2z 11409 . . . . . 6  |-  2  e.  ZZ
109a1i 11 . . . . 5  |-  ( ph  ->  2  e.  ZZ )
11 fourierdlem114.h . . . . . . . 8  |-  H  =  ( { -u pi ,  pi ,  ( E `
 X ) }  u.  ( ( -u pi [,] pi )  \  dom  G ) )
12 tpfi 8236 . . . . . . . . . 10  |-  { -u pi ,  pi , 
( E `  X
) }  e.  Fin
1312a1i 11 . . . . . . . . 9  |-  ( ph  ->  { -u pi ,  pi ,  ( E `  X ) }  e.  Fin )
14 pire 24210 . . . . . . . . . . . . . . 15  |-  pi  e.  RR
1514renegcli 10342 . . . . . . . . . . . . . 14  |-  -u pi  e.  RR
1615rexri 10097 . . . . . . . . . . . . 13  |-  -u pi  e.  RR*
1714rexri 10097 . . . . . . . . . . . . 13  |-  pi  e.  RR*
18 negpilt0 39492 . . . . . . . . . . . . . . 15  |-  -u pi  <  0
19 pipos 24212 . . . . . . . . . . . . . . 15  |-  0  <  pi
20 0re 10040 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
2115, 20, 14lttri 10163 . . . . . . . . . . . . . . 15  |-  ( (
-u pi  <  0  /\  0  <  pi )  ->  -u pi  <  pi )
2218, 19, 21mp2an 708 . . . . . . . . . . . . . 14  |-  -u pi  <  pi
2315, 14, 22ltleii 10160 . . . . . . . . . . . . 13  |-  -u pi  <_  pi
24 prunioo 12301 . . . . . . . . . . . . 13  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR*  /\  -u pi  <_  pi )  ->  (
( -u pi (,) pi )  u.  { -u pi ,  pi } )  =  ( -u pi [,] pi ) )
2516, 17, 23, 24mp3an 1424 . . . . . . . . . . . 12  |-  ( (
-u pi (,) pi )  u.  { -u pi ,  pi } )  =  ( -u pi [,] pi )
2625difeq1i 3724 . . . . . . . . . . 11  |-  ( ( ( -u pi (,) pi )  u.  { -u pi ,  pi }
)  \  dom  G )  =  ( ( -u pi [,] pi )  \  dom  G )
27 difundir 3880 . . . . . . . . . . 11  |-  ( ( ( -u pi (,) pi )  u.  { -u pi ,  pi }
)  \  dom  G )  =  ( ( (
-u pi (,) pi )  \  dom  G )  u.  ( { -u pi ,  pi }  \  dom  G ) )
2826, 27eqtr3i 2646 . . . . . . . . . 10  |-  ( (
-u pi [,] pi )  \  dom  G )  =  ( ( (
-u pi (,) pi )  \  dom  G )  u.  ( { -u pi ,  pi }  \  dom  G ) )
29 fourierdlem114.dmdv . . . . . . . . . . 11  |-  ( ph  ->  ( ( -u pi (,) pi )  \  dom  G )  e.  Fin )
30 prfi 8235 . . . . . . . . . . . 12  |-  { -u pi ,  pi }  e.  Fin
31 diffi 8192 . . . . . . . . . . . 12  |-  ( {
-u pi ,  pi }  e.  Fin  ->  ( { -u pi ,  pi }  \  dom  G )  e.  Fin )
3230, 31mp1i 13 . . . . . . . . . . 11  |-  ( ph  ->  ( { -u pi ,  pi }  \  dom  G )  e.  Fin )
33 unfi 8227 . . . . . . . . . . 11  |-  ( ( ( ( -u pi (,) pi )  \  dom  G )  e.  Fin  /\  ( { -u pi ,  pi }  \  dom  G
)  e.  Fin )  ->  ( ( ( -u pi (,) pi )  \  dom  G )  u.  ( { -u pi ,  pi }  \  dom  G ) )  e.  Fin )
3429, 32, 33syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( -u pi (,) pi )  \  dom  G )  u.  ( { -u pi ,  pi }  \  dom  G ) )  e.  Fin )
3528, 34syl5eqel 2705 . . . . . . . . 9  |-  ( ph  ->  ( ( -u pi [,] pi )  \  dom  G )  e.  Fin )
36 unfi 8227 . . . . . . . . 9  |-  ( ( { -u pi ,  pi ,  ( E `  X ) }  e.  Fin  /\  ( ( -u pi [,] pi )  \  dom  G )  e.  Fin )  ->  ( { -u pi ,  pi , 
( E `  X
) }  u.  (
( -u pi [,] pi )  \  dom  G ) )  e.  Fin )
3713, 35, 36syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( { -u pi ,  pi ,  ( E `
 X ) }  u.  ( ( -u pi [,] pi )  \  dom  G ) )  e. 
Fin )
3811, 37syl5eqel 2705 . . . . . . 7  |-  ( ph  ->  H  e.  Fin )
39 hashcl 13147 . . . . . . 7  |-  ( H  e.  Fin  ->  ( # `
 H )  e. 
NN0 )
4038, 39syl 17 . . . . . 6  |-  ( ph  ->  ( # `  H
)  e.  NN0 )
4140nn0zd 11480 . . . . 5  |-  ( ph  ->  ( # `  H
)  e.  ZZ )
4215, 22ltneii 10150 . . . . . . 7  |-  -u pi  =/=  pi
43 hashprg 13182 . . . . . . . 8  |-  ( (
-u pi  e.  RR  /\  pi  e.  RR )  ->  ( -u pi  =/=  pi  <->  ( # `  { -u pi ,  pi }
)  =  2 ) )
4415, 14, 43mp2an 708 . . . . . . 7  |-  ( -u pi  =/=  pi  <->  ( # `  { -u pi ,  pi }
)  =  2 )
4542, 44mpbi 220 . . . . . 6  |-  ( # `  { -u pi ,  pi } )  =  2
4612elexi 3213 . . . . . . . . . 10  |-  { -u pi ,  pi , 
( E `  X
) }  e.  _V
47 ovex 6678 . . . . . . . . . . 11  |-  ( -u pi [,] pi )  e. 
_V
48 difexg 4808 . . . . . . . . . . 11  |-  ( (
-u pi [,] pi )  e.  _V  ->  ( ( -u pi [,] pi )  \  dom  G
)  e.  _V )
4947, 48ax-mp 5 . . . . . . . . . 10  |-  ( (
-u pi [,] pi )  \  dom  G )  e.  _V
5046, 49unex 6956 . . . . . . . . 9  |-  ( {
-u pi ,  pi ,  ( E `  X ) }  u.  ( ( -u pi [,] pi )  \  dom  G ) )  e.  _V
5111, 50eqeltri 2697 . . . . . . . 8  |-  H  e. 
_V
52 negex 10279 . . . . . . . . . . 11  |-  -u pi  e.  _V
5352tpid1 4303 . . . . . . . . . 10  |-  -u pi  e.  { -u pi ,  pi ,  ( E `  X ) }
5414elexi 3213 . . . . . . . . . . 11  |-  pi  e.  _V
5554tpid2 4304 . . . . . . . . . 10  |-  pi  e.  {
-u pi ,  pi ,  ( E `  X ) }
56 prssi 4353 . . . . . . . . . 10  |-  ( (
-u pi  e.  { -u pi ,  pi , 
( E `  X
) }  /\  pi  e.  { -u pi ,  pi ,  ( E `  X ) } )  ->  { -u pi ,  pi }  C_  { -u pi ,  pi , 
( E `  X
) } )
5753, 55, 56mp2an 708 . . . . . . . . 9  |-  { -u pi ,  pi }  C_ 
{ -u pi ,  pi ,  ( E `  X ) }
58 ssun1 3776 . . . . . . . . . 10  |-  { -u pi ,  pi , 
( E `  X
) }  C_  ( { -u pi ,  pi ,  ( E `  X ) }  u.  ( ( -u pi [,] pi )  \  dom  G ) )
5958, 11sseqtr4i 3638 . . . . . . . . 9  |-  { -u pi ,  pi , 
( E `  X
) }  C_  H
6057, 59sstri 3612 . . . . . . . 8  |-  { -u pi ,  pi }  C_  H
61 hashss 13197 . . . . . . . 8  |-  ( ( H  e.  _V  /\  {
-u pi ,  pi }  C_  H )  -> 
( # `  { -u pi ,  pi }
)  <_  ( # `  H
) )
6251, 60, 61mp2an 708 . . . . . . 7  |-  ( # `  { -u pi ,  pi } )  <_  ( # `
 H )
6362a1i 11 . . . . . 6  |-  ( ph  ->  ( # `  { -u pi ,  pi }
)  <_  ( # `  H
) )
6445, 63syl5eqbrr 4689 . . . . 5  |-  ( ph  ->  2  <_  ( # `  H
) )
65 eluz2 11693 . . . . 5  |-  ( (
# `  H )  e.  ( ZZ>= `  2 )  <->  ( 2  e.  ZZ  /\  ( # `  H )  e.  ZZ  /\  2  <_  ( # `  H
) ) )
6610, 41, 64, 65syl3anbrc 1246 . . . 4  |-  ( ph  ->  ( # `  H
)  e.  ( ZZ>= ` 
2 ) )
67 uz2m1nn 11763 . . . 4  |-  ( (
# `  H )  e.  ( ZZ>= `  2 )  ->  ( ( # `  H
)  -  1 )  e.  NN )
6866, 67syl 17 . . 3  |-  ( ph  ->  ( ( # `  H
)  -  1 )  e.  NN )
698, 68syl5eqel 2705 . 2  |-  ( ph  ->  M  e.  NN )
7015a1i 11 . . . . . . . . . . 11  |-  ( ph  -> 
-u pi  e.  RR )
7114a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  pi  e.  RR )
72 negpitopissre 24286 . . . . . . . . . . . 12  |-  ( -u pi (,] pi )  C_  RR
7322a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  -> 
-u pi  <  pi )
74 picn 24211 . . . . . . . . . . . . . . . 16  |-  pi  e.  CC
75742timesi 11147 . . . . . . . . . . . . . . 15  |-  ( 2  x.  pi )  =  ( pi  +  pi )
7674, 74subnegi 10360 . . . . . . . . . . . . . . 15  |-  ( pi 
-  -u pi )  =  ( pi  +  pi )
7775, 2, 763eqtr4i 2654 . . . . . . . . . . . . . 14  |-  T  =  ( pi  -  -u pi )
78 fourierdlem114.e . . . . . . . . . . . . . 14  |-  E  =  ( x  e.  RR  |->  ( x  +  (
( |_ `  (
( pi  -  x
)  /  T ) )  x.  T ) ) )
7970, 71, 73, 77, 78fourierdlem4 40328 . . . . . . . . . . . . 13  |-  ( ph  ->  E : RR --> ( -u pi (,] pi ) )
8079, 4ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ph  ->  ( E `  X
)  e.  ( -u pi (,] pi ) )
8172, 80sseldi 3601 . . . . . . . . . . 11  |-  ( ph  ->  ( E `  X
)  e.  RR )
8270, 71, 813jca 1242 . . . . . . . . . 10  |-  ( ph  ->  ( -u pi  e.  RR  /\  pi  e.  RR  /\  ( E `  X
)  e.  RR ) )
83 fvex 6201 . . . . . . . . . . 11  |-  ( E `
 X )  e. 
_V
8452, 54, 83tpss 4368 . . . . . . . . . 10  |-  ( (
-u pi  e.  RR  /\  pi  e.  RR  /\  ( E `  X )  e.  RR )  <->  { -u pi ,  pi ,  ( E `
 X ) } 
C_  RR )
8582, 84sylib 208 . . . . . . . . 9  |-  ( ph  ->  { -u pi ,  pi ,  ( E `  X ) }  C_  RR )
86 iccssre 12255 . . . . . . . . . . 11  |-  ( (
-u pi  e.  RR  /\  pi  e.  RR )  ->  ( -u pi [,] pi )  C_  RR )
8715, 14, 86mp2an 708 . . . . . . . . . 10  |-  ( -u pi [,] pi )  C_  RR
88 ssdifss 3741 . . . . . . . . . 10  |-  ( (
-u pi [,] pi )  C_  RR  ->  (
( -u pi [,] pi )  \  dom  G ) 
C_  RR )
8987, 88mp1i 13 . . . . . . . . 9  |-  ( ph  ->  ( ( -u pi [,] pi )  \  dom  G )  C_  RR )
9085, 89unssd 3789 . . . . . . . 8  |-  ( ph  ->  ( { -u pi ,  pi ,  ( E `
 X ) }  u.  ( ( -u pi [,] pi )  \  dom  G ) )  C_  RR )
9111, 90syl5eqss 3649 . . . . . . 7  |-  ( ph  ->  H  C_  RR )
92 fourierdlem114.q . . . . . . 7  |-  Q  =  ( iota g g 
Isom  <  ,  <  (
( 0 ... M
) ,  H ) )
9338, 91, 92, 8fourierdlem36 40360 . . . . . 6  |-  ( ph  ->  Q  Isom  <  ,  <  ( ( 0 ... M
) ,  H ) )
94 isof1o 6573 . . . . . 6  |-  ( Q 
Isom  <  ,  <  (
( 0 ... M
) ,  H )  ->  Q : ( 0 ... M ) -1-1-onto-> H )
95 f1of 6137 . . . . . 6  |-  ( Q : ( 0 ... M ) -1-1-onto-> H  ->  Q :
( 0 ... M
) --> H )
9693, 94, 953syl 18 . . . . 5  |-  ( ph  ->  Q : ( 0 ... M ) --> H )
9796, 91fssd 6057 . . . 4  |-  ( ph  ->  Q : ( 0 ... M ) --> RR )
98 reex 10027 . . . . 5  |-  RR  e.  _V
99 ovex 6678 . . . . 5  |-  ( 0 ... M )  e. 
_V
10098, 99elmap 7886 . . . 4  |-  ( Q  e.  ( RR  ^m  ( 0 ... M
) )  <->  Q :
( 0 ... M
) --> RR )
10197, 100sylibr 224 . . 3  |-  ( ph  ->  Q  e.  ( RR 
^m  ( 0 ... M ) ) )
102 fveq2 6191 . . . . . . . . . . 11  |-  ( 0  =  i  ->  ( Q `  0 )  =  ( Q `  i ) )
103102adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  =  i )  -> 
( Q `  0
)  =  ( Q `
 i ) )
10497ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  ( Q `  i )  e.  RR )
105104leidd 10594 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  ( Q `  i )  <_  ( Q `  i
) )
106105adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  =  i )  -> 
( Q `  i
)  <_  ( Q `  i ) )
107103, 106eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  =  i )  -> 
( Q `  0
)  <_  ( Q `  i ) )
108 elfzelz 12342 . . . . . . . . . . . . 13  |-  ( i  e.  ( 0 ... M )  ->  i  e.  ZZ )
109108zred 11482 . . . . . . . . . . . 12  |-  ( i  e.  ( 0 ... M )  ->  i  e.  RR )
110109ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  0  =  i )  ->  i  e.  RR )
111 elfzle1 12344 . . . . . . . . . . . 12  |-  ( i  e.  ( 0 ... M )  ->  0  <_  i )
112111ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  0  =  i )  ->  0  <_  i )
113 neqne 2802 . . . . . . . . . . . . 13  |-  ( -.  0  =  i  -> 
0  =/=  i )
114113necomd 2849 . . . . . . . . . . . 12  |-  ( -.  0  =  i  -> 
i  =/=  0 )
115114adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  0  =  i )  ->  i  =/=  0 )
116110, 112, 115ne0gt0d 10174 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  0  =  i )  ->  0  <  i )
117 nnssnn0 11295 . . . . . . . . . . . . . . . . 17  |-  NN  C_  NN0
118 nn0uz 11722 . . . . . . . . . . . . . . . . 17  |-  NN0  =  ( ZZ>= `  0 )
119117, 118sseqtri 3637 . . . . . . . . . . . . . . . 16  |-  NN  C_  ( ZZ>= `  0 )
120119, 69sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
121 eluzfz1 12348 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... M
) )
122120, 121syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  e.  ( 0 ... M ) )
12396, 122ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q `  0
)  e.  H )
12491, 123sseldd 3604 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q `  0
)  e.  RR )
125124ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  <  i )  ->  ( Q `  0 )  e.  RR )
126104adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  <  i )  ->  ( Q `  i )  e.  RR )
127 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  <  i )  ->  0  <  i )
12893ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  <  i )  ->  Q  Isom  <  ,  <  (
( 0 ... M
) ,  H ) )
129122anim1i 592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  (
0  e.  ( 0 ... M )  /\  i  e.  ( 0 ... M ) ) )
130129adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  <  i )  ->  (
0  e.  ( 0 ... M )  /\  i  e.  ( 0 ... M ) ) )
131 isorel 6576 . . . . . . . . . . . . 13  |-  ( ( Q  Isom  <  ,  <  ( ( 0 ... M
) ,  H )  /\  ( 0  e.  ( 0 ... M
)  /\  i  e.  ( 0 ... M
) ) )  -> 
( 0  <  i  <->  ( Q `  0 )  <  ( Q `  i ) ) )
132128, 130, 131syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  <  i )  ->  (
0  <  i  <->  ( Q `  0 )  < 
( Q `  i
) ) )
133127, 132mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  <  i )  ->  ( Q `  0 )  <  ( Q `  i
) )
134125, 126, 133ltled 10185 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  0  <  i )  ->  ( Q `  0 )  <_  ( Q `  i
) )
135116, 134syldan 487 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  0  =  i )  ->  ( Q `  0
)  <_  ( Q `  i ) )
136107, 135pm2.61dan 832 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  ( Q `  0 )  <_  ( Q `  i
) )
137136adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  ( Q `  i )  =  -u pi )  -> 
( Q `  0
)  <_  ( Q `  i ) )
138 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  ( Q `  i )  =  -u pi )  -> 
( Q `  i
)  =  -u pi )
139137, 138breqtrd 4679 . . . . . 6  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  ( Q `  i )  =  -u pi )  -> 
( Q `  0
)  <_  -u pi )
14070rexrd 10089 . . . . . . . 8  |-  ( ph  -> 
-u pi  e.  RR* )
14171rexrd 10089 . . . . . . . 8  |-  ( ph  ->  pi  e.  RR* )
142 lbicc2 12288 . . . . . . . . . . . . . 14  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR*  /\  -u pi  <_  pi )  ->  -u pi  e.  ( -u pi [,] pi ) )
14316, 17, 23, 142mp3an 1424 . . . . . . . . . . . . 13  |-  -u pi  e.  ( -u pi [,] pi )
144143a1i 11 . . . . . . . . . . . 12  |-  ( ph  -> 
-u pi  e.  (
-u pi [,] pi ) )
145 ubicc2 12289 . . . . . . . . . . . . . 14  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR*  /\  -u pi  <_  pi )  ->  pi  e.  ( -u pi [,] pi ) )
14616, 17, 23, 145mp3an 1424 . . . . . . . . . . . . 13  |-  pi  e.  ( -u pi [,] pi )
147146a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  pi  e.  ( -u pi [,] pi ) )
148 iocssicc 12261 . . . . . . . . . . . . 13  |-  ( -u pi (,] pi )  C_  ( -u pi [,] pi )
149148, 80sseldi 3601 . . . . . . . . . . . 12  |-  ( ph  ->  ( E `  X
)  e.  ( -u pi [,] pi ) )
150 tpssi 4369 . . . . . . . . . . . 12  |-  ( (
-u pi  e.  (
-u pi [,] pi )  /\  pi  e.  (
-u pi [,] pi )  /\  ( E `  X )  e.  (
-u pi [,] pi ) )  ->  { -u pi ,  pi , 
( E `  X
) }  C_  ( -u pi [,] pi ) )
151144, 147, 149, 150syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  { -u pi ,  pi ,  ( E `  X ) }  C_  ( -u pi [,] pi ) )
152 difssd 3738 . . . . . . . . . . 11  |-  ( ph  ->  ( ( -u pi [,] pi )  \  dom  G )  C_  ( -u pi [,] pi ) )
153151, 152unssd 3789 . . . . . . . . . 10  |-  ( ph  ->  ( { -u pi ,  pi ,  ( E `
 X ) }  u.  ( ( -u pi [,] pi )  \  dom  G ) )  C_  ( -u pi [,] pi ) )
15411, 153syl5eqss 3649 . . . . . . . . 9  |-  ( ph  ->  H  C_  ( -u pi [,] pi ) )
155154, 123sseldd 3604 . . . . . . . 8  |-  ( ph  ->  ( Q `  0
)  e.  ( -u pi [,] pi ) )
156 iccgelb 12230 . . . . . . . 8  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR*  /\  ( Q `  0 )  e.  ( -u pi [,] pi ) )  ->  -u pi  <_  ( Q `  0
) )
157140, 141, 155, 156syl3anc 1326 . . . . . . 7  |-  ( ph  -> 
-u pi  <_  ( Q `  0 )
)
158157ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  ( Q `  i )  =  -u pi )  ->  -u pi  <_  ( Q `  0 ) )
159124ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  ( Q `  i )  =  -u pi )  -> 
( Q `  0
)  e.  RR )
16015a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  ( Q `  i )  =  -u pi )  ->  -u pi  e.  RR )
161159, 160letri3d 10179 . . . . . 6  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  ( Q `  i )  =  -u pi )  -> 
( ( Q ` 
0 )  =  -u pi 
<->  ( ( Q ` 
0 )  <_  -u pi  /\  -u pi  <_  ( Q `
 0 ) ) ) )
162139, 158, 161mpbir2and 957 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  ( Q `  i )  =  -u pi )  -> 
( Q `  0
)  =  -u pi )
16359, 53sselii 3600 . . . . . . 7  |-  -u pi  e.  H
164 f1ofo 6144 . . . . . . . . 9  |-  ( Q : ( 0 ... M ) -1-1-onto-> H  ->  Q :
( 0 ... M
) -onto-> H )
16594, 164syl 17 . . . . . . . 8  |-  ( Q 
Isom  <  ,  <  (
( 0 ... M
) ,  H )  ->  Q : ( 0 ... M )
-onto-> H )
166 forn 6118 . . . . . . . 8  |-  ( Q : ( 0 ... M ) -onto-> H  ->  ran  Q  =  H )
16793, 165, 1663syl 18 . . . . . . 7  |-  ( ph  ->  ran  Q  =  H )
168163, 167syl5eleqr 2708 . . . . . 6  |-  ( ph  -> 
-u pi  e.  ran  Q )
169 ffn 6045 . . . . . . 7  |-  ( Q : ( 0 ... M ) --> H  ->  Q  Fn  ( 0 ... M ) )
170 fvelrnb 6243 . . . . . . 7  |-  ( Q  Fn  ( 0 ... M )  ->  ( -u pi  e.  ran  Q  <->  E. i  e.  ( 0 ... M ) ( Q `  i )  =  -u pi ) )
17196, 169, 1703syl 18 . . . . . 6  |-  ( ph  ->  ( -u pi  e.  ran  Q  <->  E. i  e.  ( 0 ... M ) ( Q `  i
)  =  -u pi ) )
172168, 171mpbid 222 . . . . 5  |-  ( ph  ->  E. i  e.  ( 0 ... M ) ( Q `  i
)  =  -u pi )
173162, 172r19.29a 3078 . . . 4  |-  ( ph  ->  ( Q `  0
)  =  -u pi )
17459, 55sselii 3600 . . . . . . 7  |-  pi  e.  H
175174, 167syl5eleqr 2708 . . . . . 6  |-  ( ph  ->  pi  e.  ran  Q
)
176 fvelrnb 6243 . . . . . . 7  |-  ( Q  Fn  ( 0 ... M )  ->  (
pi  e.  ran  Q  <->  E. i  e.  ( 0 ... M ) ( Q `  i )  =  pi ) )
17796, 169, 1763syl 18 . . . . . 6  |-  ( ph  ->  ( pi  e.  ran  Q  <->  E. i  e.  (
0 ... M ) ( Q `  i )  =  pi ) )
178175, 177mpbid 222 . . . . 5  |-  ( ph  ->  E. i  e.  ( 0 ... M ) ( Q `  i
)  =  pi )
17996, 154fssd 6057 . . . . . . . . . 10  |-  ( ph  ->  Q : ( 0 ... M ) --> (
-u pi [,] pi ) )
180 eluzfz2 12349 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  0
)  ->  M  e.  ( 0 ... M
) )
181120, 180syl 17 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( 0 ... M ) )
182179, 181ffvelrnd 6360 . . . . . . . . 9  |-  ( ph  ->  ( Q `  M
)  e.  ( -u pi [,] pi ) )
183 iccleub 12229 . . . . . . . . 9  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR*  /\  ( Q `  M )  e.  ( -u pi [,] pi ) )  ->  ( Q `  M )  <_  pi )
184140, 141, 182, 183syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( Q `  M
)  <_  pi )
1851843ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0 ... M
)  /\  ( Q `  i )  =  pi )  ->  ( Q `  M )  <_  pi )
186 id 22 . . . . . . . . . 10  |-  ( ( Q `  i )  =  pi  ->  ( Q `  i )  =  pi )
187186eqcomd 2628 . . . . . . . . 9  |-  ( ( Q `  i )  =  pi  ->  pi  =  ( Q `  i ) )
1881873ad2ant3 1084 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 0 ... M
)  /\  ( Q `  i )  =  pi )  ->  pi  =  ( Q `  i ) )
189105adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  =  M )  ->  ( Q `  i )  <_  ( Q `  i
) )
190 fveq2 6191 . . . . . . . . . . . 12  |-  ( i  =  M  ->  ( Q `  i )  =  ( Q `  M ) )
191190adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  =  M )  ->  ( Q `  i )  =  ( Q `  M ) )
192189, 191breqtrd 4679 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  =  M )  ->  ( Q `  i )  <_  ( Q `  M
) )
193109ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  i  =  M )  ->  i  e.  RR )
194 elfzel2 12340 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 0 ... M )  ->  M  e.  ZZ )
195194zred 11482 . . . . . . . . . . . . 13  |-  ( i  e.  ( 0 ... M )  ->  M  e.  RR )
196195ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  i  =  M )  ->  M  e.  RR )
197 elfzle2 12345 . . . . . . . . . . . . 13  |-  ( i  e.  ( 0 ... M )  ->  i  <_  M )
198197ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  i  =  M )  ->  i  <_  M )
199 neqne 2802 . . . . . . . . . . . . . 14  |-  ( -.  i  =  M  -> 
i  =/=  M )
200199necomd 2849 . . . . . . . . . . . . 13  |-  ( -.  i  =  M  ->  M  =/=  i )
201200adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  i  =  M )  ->  M  =/=  i )
202193, 196, 198, 201leneltd 10191 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  i  =  M )  ->  i  <  M )
203104adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  <  M )  ->  ( Q `  i )  e.  RR )
20487, 182sseldi 3601 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q `  M
)  e.  RR )
205204ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  <  M )  ->  ( Q `  M )  e.  RR )
206 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  <  M )  ->  i  <  M )
20793ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  <  M )  ->  Q  Isom  <  ,  <  (
( 0 ... M
) ,  H ) )
208 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  i  e.  ( 0 ... M
) )
209181adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  M  e.  ( 0 ... M
) )
210208, 209jca 554 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  (
i  e.  ( 0 ... M )  /\  M  e.  ( 0 ... M ) ) )
211210adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  <  M )  ->  (
i  e.  ( 0 ... M )  /\  M  e.  ( 0 ... M ) ) )
212 isorel 6576 . . . . . . . . . . . . . 14  |-  ( ( Q  Isom  <  ,  <  ( ( 0 ... M
) ,  H )  /\  ( i  e.  ( 0 ... M
)  /\  M  e.  ( 0 ... M
) ) )  -> 
( i  <  M  <->  ( Q `  i )  <  ( Q `  M ) ) )
213207, 211, 212syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  <  M )  ->  (
i  <  M  <->  ( Q `  i )  <  ( Q `  M )
) )
214206, 213mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  <  M )  ->  ( Q `  i )  <  ( Q `  M
) )
215203, 205, 214ltled 10185 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  i  <  M )  ->  ( Q `  i )  <_  ( Q `  M
) )
216202, 215syldan 487 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  ( 0 ... M
) )  /\  -.  i  =  M )  ->  ( Q `  i
)  <_  ( Q `  M ) )
217192, 216pm2.61dan 832 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 0 ... M
) )  ->  ( Q `  i )  <_  ( Q `  M
) )
2182173adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 0 ... M
)  /\  ( Q `  i )  =  pi )  ->  ( Q `  i )  <_  ( Q `  M )
)
219188, 218eqbrtrd 4675 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0 ... M
)  /\  ( Q `  i )  =  pi )  ->  pi  <_  ( Q `  M ) )
2202043ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 0 ... M
)  /\  ( Q `  i )  =  pi )  ->  ( Q `  M )  e.  RR )
22114a1i 11 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 0 ... M
)  /\  ( Q `  i )  =  pi )  ->  pi  e.  RR )
222220, 221letri3d 10179 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0 ... M
)  /\  ( Q `  i )  =  pi )  ->  ( ( Q `  M )  =  pi  <->  ( ( Q `
 M )  <_  pi  /\  pi  <_  ( Q `  M )
) ) )
223185, 219, 222mpbir2and 957 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0 ... M
)  /\  ( Q `  i )  =  pi )  ->  ( Q `  M )  =  pi )
224223rexlimdv3a 3033 . . . . 5  |-  ( ph  ->  ( E. i  e.  ( 0 ... M
) ( Q `  i )  =  pi 
->  ( Q `  M
)  =  pi ) )
225178, 224mpd 15 . . . 4  |-  ( ph  ->  ( Q `  M
)  =  pi )
226 elfzoelz 12470 . . . . . . . . 9  |-  ( i  e.  ( 0..^ M )  ->  i  e.  ZZ )
227226zred 11482 . . . . . . . 8  |-  ( i  e.  ( 0..^ M )  ->  i  e.  RR )
228227ltp1d 10954 . . . . . . 7  |-  ( i  e.  ( 0..^ M )  ->  i  <  ( i  +  1 ) )
229228adantl 482 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  i  <  (
i  +  1 ) )
230 elfzofz 12485 . . . . . . . 8  |-  ( i  e.  ( 0..^ M )  ->  i  e.  ( 0 ... M
) )
231 fzofzp1 12565 . . . . . . . 8  |-  ( i  e.  ( 0..^ M )  ->  ( i  +  1 )  e.  ( 0 ... M
) )
232230, 231jca 554 . . . . . . 7  |-  ( i  e.  ( 0..^ M )  ->  ( i  e.  ( 0 ... M
)  /\  ( i  +  1 )  e.  ( 0 ... M
) ) )
233 isorel 6576 . . . . . . 7  |-  ( ( Q  Isom  <  ,  <  ( ( 0 ... M
) ,  H )  /\  ( i  e.  ( 0 ... M
)  /\  ( i  +  1 )  e.  ( 0 ... M
) ) )  -> 
( i  <  (
i  +  1 )  <-> 
( Q `  i
)  <  ( Q `  ( i  +  1 ) ) ) )
23493, 232, 233syl2an 494 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( i  < 
( i  +  1 )  <->  ( Q `  i )  <  ( Q `  ( i  +  1 ) ) ) )
235229, 234mpbid 222 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
236235ralrimiva 2966 . . . 4  |-  ( ph  ->  A. i  e.  ( 0..^ M ) ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
237173, 225, 236jca31 557 . . 3  |-  ( ph  ->  ( ( ( Q `
 0 )  = 
-u pi  /\  ( Q `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) )
2387fourierdlem2 40326 . . . 4  |-  ( M  e.  NN  ->  ( Q  e.  ( P `  M )  <->  ( Q  e.  ( RR  ^m  (
0 ... M ) )  /\  ( ( ( Q `  0 )  =  -u pi  /\  ( Q `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
23969, 238syl 17 . . 3  |-  ( ph  ->  ( Q  e.  ( P `  M )  <-> 
( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  -u pi  /\  ( Q `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
240101, 237, 239mpbir2and 957 . 2  |-  ( ph  ->  Q  e.  ( P `
 M ) )
241 fourierdlem114.g . . . . 5  |-  G  =  ( ( RR  _D  F )  |`  ( -u pi (,) pi ) )
242241reseq1i 5392 . . . 4  |-  ( G  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  =  ( ( ( RR  _D  F )  |`  ( -u pi (,) pi ) )  |`  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) )
24316a1i 11 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  -u pi  e.  RR* )
24417a1i 11 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  pi  e.  RR* )
245179adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  Q : ( 0 ... M ) --> ( -u pi [,] pi ) )
246 simpr 477 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  i  e.  ( 0..^ M ) )
247243, 244, 245, 246fourierdlem27 40351 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) )  C_  ( -u pi (,) pi ) )
248247resabs1d 5428 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( ( RR  _D  F )  |`  ( -u pi (,) pi ) )  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) )  =  ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) )
249242, 248syl5req 2669 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( RR 
_D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  =  ( G  |`  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) )
250 fourierdlem114.gcn . . . 4  |-  ( ph  ->  G  e.  ( dom 
G -cn-> CC ) )
251250, 7, 69, 240, 11, 167fourierdlem38 40362 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( G  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
252249, 251eqeltrd 2701 . 2  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( RR 
_D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
253249oveq1d 6665 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  i )
)  =  ( ( G  |`  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) lim CC  ( Q `  i ) ) )
254250adantr 481 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  G  e.  ( dom  G -cn-> CC ) )
255 fourierdlem114.rlim . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( -u pi [,) pi )  \  dom  G ) )  ->  (
( G  |`  (
x (,) +oo )
) lim CC  x )  =/=  (/) )
256255adantlr 751 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  x  e.  ( ( -u pi [,) pi )  \  dom  G ) )  ->  (
( G  |`  (
x (,) +oo )
) lim CC  x )  =/=  (/) )
257 fourierdlem114.llim . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( -u pi (,] pi )  \  dom  G ) )  ->  (
( G  |`  ( -oo (,) x ) ) lim
CC  x )  =/=  (/) )
258257adantlr 751 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  x  e.  ( ( -u pi (,] pi )  \  dom  G ) )  ->  (
( G  |`  ( -oo (,) x ) ) lim
CC  x )  =/=  (/) )
25993adantr 481 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  Q  Isom  <  ,  <  ( ( 0 ... M ) ,  H ) )
260259, 94, 953syl 18 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  Q : ( 0 ... M ) --> H )
26181adantr 481 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( E `  X )  e.  RR )
262259, 165, 1663syl 18 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ran  Q  =  H )
263254, 256, 258, 259, 260, 246, 235, 247, 261, 11, 262fourierdlem46 40369 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( ( G  |`  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) lim CC  ( Q `  i ) )  =/=  (/)  /\  (
( G  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 ( i  +  1 ) ) )  =/=  (/) ) )
264263simpld 475 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( G  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  i )
)  =/=  (/) )
265253, 264eqnetrd 2861 . 2  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  i )
)  =/=  (/) )
266249oveq1d 6665 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) )  =  ( ( G  |`  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) ) )
267263simprd 479 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( G  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) )  =/=  (/) )
268266, 267eqnetrd 2861 . 2  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) )  =/=  (/) )
269 fourierdlem114.a . 2  |-  A  =  ( n  e.  NN0  |->  ( S. ( -u pi (,) pi ) ( ( F `  x )  x.  ( cos `  (
n  x.  x ) ) )  _d x  /  pi ) )
270 fourierdlem114.b . 2  |-  B  =  ( n  e.  NN  |->  ( S. ( -u pi (,) pi ) ( ( F `  x )  x.  ( sin `  (
n  x.  x ) ) )  _d x  /  pi ) )
271 fourierdlem114.s . 2  |-  S  =  ( n  e.  NN  |->  ( ( ( A `
 n )  x.  ( cos `  (
n  x.  X ) ) )  +  ( ( B `  n
)  x.  ( sin `  ( n  x.  X
) ) ) ) )
27283tpid3 4307 . . . . 5  |-  ( E `
 X )  e. 
{ -u pi ,  pi ,  ( E `  X ) }
273 elun1 3780 . . . . 5  |-  ( ( E `  X )  e.  { -u pi ,  pi ,  ( E `
 X ) }  ->  ( E `  X )  e.  ( { -u pi ,  pi ,  ( E `  X ) }  u.  ( ( -u pi [,] pi )  \  dom  G ) ) )
274272, 273mp1i 13 . . . 4  |-  ( ph  ->  ( E `  X
)  e.  ( {
-u pi ,  pi ,  ( E `  X ) }  u.  ( ( -u pi [,] pi )  \  dom  G ) ) )
275274, 11syl6eleqr 2712 . . 3  |-  ( ph  ->  ( E `  X
)  e.  H )
276275, 167eleqtrrd 2704 . 2  |-  ( ph  ->  ( E `  X
)  e.  ran  Q
)
2771, 2, 3, 4, 5, 6, 7, 69, 240, 252, 265, 268, 269, 270, 271, 78, 276fourierdlem113 40436 1  |-  ( ph  ->  (  seq 1 (  +  ,  S )  ~~>  ( ( ( L  +  R )  / 
2 )  -  (
( A `  0
)  /  2 ) )  /\  ( ( ( A `  0
)  /  2 )  +  sum_ n  e.  NN  ( ( ( A `
 n )  x.  ( cos `  (
n  x.  X ) ) )  +  ( ( B `  n
)  x.  ( sin `  ( n  x.  X
) ) ) ) )  =  ( ( L  +  R )  /  2 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {cpr 4179   {ctp 4181   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   iotacio 5849    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   (,)cioo 12175   (,]cioc 12176   [,)cico 12177   [,]cicc 12178   ...cfz 12326  ..^cfzo 12465   |_cfl 12591    seqcseq 12801   #chash 13117    ~~> cli 14215   sum_csu 14416   sincsin 14794   cosccos 14795   picpi 14797   -cn->ccncf 22679   S.citg 23387   lim CC climc 23626    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem115  40438
  Copyright terms: Public domain W3C validator