Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem37 Structured version   Visualization version   Unicode version

Theorem fourierdlem37 40361
Description:  I is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem37.p  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
fourierdlem37.m  |-  ( ph  ->  M  e.  NN )
fourierdlem37.q  |-  ( ph  ->  Q  e.  ( P `
 M ) )
fourierdlem37.t  |-  T  =  ( B  -  A
)
fourierdlem37.e  |-  E  =  ( x  e.  RR  |->  ( x  +  (
( |_ `  (
( B  -  x
)  /  T ) )  x.  T ) ) )
fourierdlem37.l  |-  L  =  ( y  e.  ( A (,] B ) 
|->  if ( y  =  B ,  A , 
y ) )
fourierdlem37.i  |-  I  =  ( x  e.  RR  |->  sup ( { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) } ,  RR ,  <  ) )
Assertion
Ref Expression
fourierdlem37  |-  ( ph  ->  ( I : RR --> ( 0..^ M )  /\  ( x  e.  RR  ->  sup ( { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) } ,  RR ,  <  )  e.  {
i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) } ) ) )
Distinct variable groups:    A, m, p    x, A, y    B, m, p    x, B, y   
i, E    y, E    i, L    i, M, m, p    x, M, i    Q, i, p    x, T    ph, i, x    ph, y
Allowed substitution hints:    ph( m, p)    A( i)    B( i)    P( x, y, i, m, p)    Q( x, y, m)    T( y, i, m, p)    E( x, m, p)    I( x, y, i, m, p)    L( x, y, m, p)    M( y)

Proof of Theorem fourierdlem37
StepHypRef Expression
1 ssrab2 3687 . . . 4  |-  { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) }  C_  (
0..^ M )
2 ltso 10118 . . . . . 6  |-  <  Or  RR
32a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  <  Or  RR )
4 fzfi 12771 . . . . . . 7  |-  ( 0 ... M )  e. 
Fin
5 fzossfz 12488 . . . . . . . 8  |-  ( 0..^ M )  C_  (
0 ... M )
61, 5sstri 3612 . . . . . . 7  |-  { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) }  C_  (
0 ... M )
7 ssfi 8180 . . . . . . 7  |-  ( ( ( 0 ... M
)  e.  Fin  /\  { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) }  C_  (
0 ... M ) )  ->  { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) }  e.  Fin )
84, 6, 7mp2an 708 . . . . . 6  |-  { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) }  e.  Fin
98a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) }  e.  Fin )
10 0zd 11389 . . . . . . . . 9  |-  ( ph  ->  0  e.  ZZ )
11 fourierdlem37.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN )
1211nnzd 11481 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
1311nngt0d 11064 . . . . . . . . 9  |-  ( ph  ->  0  <  M )
14 fzolb 12476 . . . . . . . . 9  |-  ( 0  e.  ( 0..^ M )  <->  ( 0  e.  ZZ  /\  M  e.  ZZ  /\  0  < 
M ) )
1510, 12, 13, 14syl3anbrc 1246 . . . . . . . 8  |-  ( ph  ->  0  e.  ( 0..^ M ) )
1615adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  0  e.  ( 0..^ M ) )
17 fourierdlem37.q . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Q  e.  ( P `
 M ) )
18 fourierdlem37.p . . . . . . . . . . . . . . . . . 18  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
1918fourierdlem2 40326 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN  ->  ( Q  e.  ( P `  M )  <->  ( Q  e.  ( RR  ^m  (
0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
2011, 19syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Q  e.  ( P `  M )  <-> 
( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
2117, 20mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  A  /\  ( Q `  M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) )
2221simprd 479 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Q `
 0 )  =  A  /\  ( Q `
 M )  =  B )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) )
2322simplld 791 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q `  0
)  =  A )
2418, 11, 17fourierdlem11 40335 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  A  <  B ) )
2524simp1d 1073 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  RR )
2623, 25eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q `  0
)  e.  RR )
2726, 23eqled 10140 . . . . . . . . . . 11  |-  ( ph  ->  ( Q `  0
)  <_  A )
2827ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( E `  x )  =  B )  ->  ( Q `  0 )  <_  A )
29 iftrue 4092 . . . . . . . . . . . 12  |-  ( ( E `  x )  =  B  ->  if ( ( E `  x )  =  B ,  A ,  ( E `  x ) )  =  A )
3029eqcomd 2628 . . . . . . . . . . 11  |-  ( ( E `  x )  =  B  ->  A  =  if ( ( E `
 x )  =  B ,  A , 
( E `  x
) ) )
3130adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( E `  x )  =  B )  ->  A  =  if ( ( E `
 x )  =  B ,  A , 
( E `  x
) ) )
3228, 31breqtrd 4679 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( E `  x )  =  B )  ->  ( Q `  0 )  <_  if ( ( E `
 x )  =  B ,  A , 
( E `  x
) ) )
3326adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( Q `
 0 )  e.  RR )
3425adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR )  ->  A  e.  RR )
3534rexrd 10089 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  A  e. 
RR* )
3624simp2d 1074 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  RR )
3736adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  B  e.  RR )
38 iocssre 12253 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A (,] B )  C_  RR )
3935, 37, 38syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( A (,] B )  C_  RR )
4024simp3d 1075 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  <  B )
41 fourierdlem37.t . . . . . . . . . . . . . . 15  |-  T  =  ( B  -  A
)
42 fourierdlem37.e . . . . . . . . . . . . . . 15  |-  E  =  ( x  e.  RR  |->  ( x  +  (
( |_ `  (
( B  -  x
)  /  T ) )  x.  T ) ) )
4325, 36, 40, 41, 42fourierdlem4 40328 . . . . . . . . . . . . . 14  |-  ( ph  ->  E : RR --> ( A (,] B ) )
4443ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( E `
 x )  e.  ( A (,] B
) )
4539, 44sseldd 3604 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( E `
 x )  e.  RR )
4623adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( Q `
 0 )  =  A )
47 elioc2 12236 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( E `  x
)  e.  ( A (,] B )  <->  ( ( E `  x )  e.  RR  /\  A  < 
( E `  x
)  /\  ( E `  x )  <_  B
) ) )
4835, 37, 47syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( E `  x )  e.  ( A (,] B )  <->  ( ( E `  x )  e.  RR  /\  A  < 
( E `  x
)  /\  ( E `  x )  <_  B
) ) )
4944, 48mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( E `  x )  e.  RR  /\  A  <  ( E `  x
)  /\  ( E `  x )  <_  B
) )
5049simp2d 1074 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  A  < 
( E `  x
) )
5146, 50eqbrtrd 4675 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( Q `
 0 )  < 
( E `  x
) )
5233, 45, 51ltled 10185 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  ( Q `
 0 )  <_ 
( E `  x
) )
5352adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  ( E `  x )  =  B )  -> 
( Q `  0
)  <_  ( E `  x ) )
54 iffalse 4095 . . . . . . . . . . . 12  |-  ( -.  ( E `  x
)  =  B  ->  if ( ( E `  x )  =  B ,  A ,  ( E `  x ) )  =  ( E `
 x ) )
5554eqcomd 2628 . . . . . . . . . . 11  |-  ( -.  ( E `  x
)  =  B  -> 
( E `  x
)  =  if ( ( E `  x
)  =  B ,  A ,  ( E `  x ) ) )
5655adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  ( E `  x )  =  B )  -> 
( E `  x
)  =  if ( ( E `  x
)  =  B ,  A ,  ( E `  x ) ) )
5753, 56breqtrd 4679 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  -.  ( E `  x )  =  B )  -> 
( Q `  0
)  <_  if (
( E `  x
)  =  B ,  A ,  ( E `  x ) ) )
5832, 57pm2.61dan 832 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( Q `
 0 )  <_  if ( ( E `  x )  =  B ,  A ,  ( E `  x ) ) )
59 fourierdlem37.l . . . . . . . . . 10  |-  L  =  ( y  e.  ( A (,] B ) 
|->  if ( y  =  B ,  A , 
y ) )
6059a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  L  =  ( y  e.  ( A (,] B ) 
|->  if ( y  =  B ,  A , 
y ) ) )
61 eqeq1 2626 . . . . . . . . . . 11  |-  ( y  =  ( E `  x )  ->  (
y  =  B  <->  ( E `  x )  =  B ) )
62 id 22 . . . . . . . . . . 11  |-  ( y  =  ( E `  x )  ->  y  =  ( E `  x ) )
6361, 62ifbieq2d 4111 . . . . . . . . . 10  |-  ( y  =  ( E `  x )  ->  if ( y  =  B ,  A ,  y )  =  if ( ( E `  x
)  =  B ,  A ,  ( E `  x ) ) )
6463adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  =  ( E `  x ) )  ->  if ( y  =  B ,  A ,  y )  =  if ( ( E `  x
)  =  B ,  A ,  ( E `  x ) ) )
6534, 45ifcld 4131 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( E `  x
)  =  B ,  A ,  ( E `  x ) )  e.  RR )
6660, 64, 44, 65fvmptd 6288 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( L `
 ( E `  x ) )  =  if ( ( E `
 x )  =  B ,  A , 
( E `  x
) ) )
6758, 66breqtrrd 4681 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( Q `
 0 )  <_ 
( L `  ( E `  x )
) )
68 fveq2 6191 . . . . . . . . 9  |-  ( i  =  0  ->  ( Q `  i )  =  ( Q ` 
0 ) )
6968breq1d 4663 . . . . . . . 8  |-  ( i  =  0  ->  (
( Q `  i
)  <_  ( L `  ( E `  x
) )  <->  ( Q `  0 )  <_ 
( L `  ( E `  x )
) ) )
7069elrab 3363 . . . . . . 7  |-  ( 0  e.  { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) }  <-> 
( 0  e.  ( 0..^ M )  /\  ( Q `  0 )  <_  ( L `  ( E `  x ) ) ) )
7116, 67, 70sylanbrc 698 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  0  e. 
{ i  e.  ( 0..^ M )  |  ( Q `  i
)  <_  ( L `  ( E `  x
) ) } )
72 ne0i 3921 . . . . . 6  |-  ( 0  e.  { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) }  ->  { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) }  =/=  (/) )
7371, 72syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) }  =/=  (/) )
74 fzssz 12343 . . . . . . . . 9  |-  ( 0 ... M )  C_  ZZ
755, 74sstri 3612 . . . . . . . 8  |-  ( 0..^ M )  C_  ZZ
76 zssre 11384 . . . . . . . 8  |-  ZZ  C_  RR
7775, 76sstri 3612 . . . . . . 7  |-  ( 0..^ M )  C_  RR
781, 77sstri 3612 . . . . . 6  |-  { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) }  C_  RR
7978a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) }  C_  RR )
80 fisupcl 8375 . . . . 5  |-  ( (  <  Or  RR  /\  ( { i  e.  ( 0..^ M )  |  ( Q `  i
)  <_  ( L `  ( E `  x
) ) }  e.  Fin  /\  { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) }  =/=  (/)  /\  { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) }  C_  RR ) )  ->  sup ( { i  e.  ( 0..^ M )  |  ( Q `  i
)  <_  ( L `  ( E `  x
) ) } ,  RR ,  <  )  e. 
{ i  e.  ( 0..^ M )  |  ( Q `  i
)  <_  ( L `  ( E `  x
) ) } )
813, 9, 73, 79, 80syl13anc 1328 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( { i  e.  ( 0..^ M )  |  ( Q `  i
)  <_  ( L `  ( E `  x
) ) } ,  RR ,  <  )  e. 
{ i  e.  ( 0..^ M )  |  ( Q `  i
)  <_  ( L `  ( E `  x
) ) } )
821, 81sseldi 3601 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( { i  e.  ( 0..^ M )  |  ( Q `  i
)  <_  ( L `  ( E `  x
) ) } ,  RR ,  <  )  e.  ( 0..^ M ) )
83 fourierdlem37.i . . 3  |-  I  =  ( x  e.  RR  |->  sup ( { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) } ,  RR ,  <  ) )
8482, 83fmptd 6385 . 2  |-  ( ph  ->  I : RR --> ( 0..^ M ) )
8581ex 450 . 2  |-  ( ph  ->  ( x  e.  RR  ->  sup ( { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) } ,  RR ,  <  )  e.  {
i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) } ) )
8684, 85jca 554 1  |-  ( ph  ->  ( I : RR --> ( 0..^ M )  /\  ( x  e.  RR  ->  sup ( { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( L `  ( E `  x )
) } ,  RR ,  <  )  e.  {
i  e.  ( 0..^ M )  |  ( Q `  i )  <_  ( L `  ( E `  x ) ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    C_ wss 3574   (/)c0 3915   ifcif 4086   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   (,]cioc 12176   ...cfz 12326  ..^cfzo 12465   |_cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioc 12180  df-fz 12327  df-fzo 12466  df-fl 12593
This theorem is referenced by:  fourierdlem79  40402  fourierdlem89  40412  fourierdlem90  40413  fourierdlem91  40414
  Copyright terms: Public domain W3C validator