MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemuldiv2 Structured version   Visualization version   Unicode version

Theorem lemuldiv2 10904
Description: 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
Assertion
Ref Expression
lemuldiv2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( C  x.  A )  <_  B  <->  A  <_  ( B  /  C ) ) )

Proof of Theorem lemuldiv2
StepHypRef Expression
1 recn 10026 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
2 recn 10026 . . . . . 6  |-  ( C  e.  RR  ->  C  e.  CC )
3 mulcom 10022 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
41, 2, 3syl2an 494 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
54adantrr 753 . . . 4  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  x.  C )  =  ( C  x.  A ) )
653adant2 1080 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  x.  C
)  =  ( C  x.  A ) )
76breq1d 4663 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <_  B  <->  ( C  x.  A )  <_  B ) )
8 lemuldiv 10903 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <_  B  <->  A  <_  ( B  /  C ) ) )
97, 8bitr3d 270 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( C  x.  A )  <_  B  <->  A  <_  ( B  /  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  lemuldiv2d  11922  intfracq  12658  modge0  12678  amgm2  14109  bl2in  22205  iihalf1  22730  minveclem4  23203  ovolunlem1a  23264  log2ub  24676  fsumharmonic  24738  ftalem5  24803  dvdsflf1o  24913  fsumfldivdiaglem  24915  bcmono  25002  lgseisenlem1  25100  lgseisenlem2  25101  lgseisenlem3  25102  lgsquadlem1  25105  lgsquadlem2  25106  chebbnd1lem3  25160  dchrisum0lem2  25207  logdivbnd  25245  pntlemh  25288  pntlemj  25292  pntlemk  25295  minvecolem4  27736  nmophmi  28890
  Copyright terms: Public domain W3C validator