MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumharmonic Structured version   Visualization version   Unicode version

Theorem fsumharmonic 24738
Description: Bound a finite sum based on the harmonic series, where the "strong" bound  C only applies asymptotically, and there is a "weak" bound  R for the remaining values. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
fsumharmonic.a  |-  ( ph  ->  A  e.  RR+ )
fsumharmonic.t  |-  ( ph  ->  ( T  e.  RR  /\  1  <_  T )
)
fsumharmonic.r  |-  ( ph  ->  ( R  e.  RR  /\  0  <_  R )
)
fsumharmonic.b  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  B  e.  CC )
fsumharmonic.c  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  C  e.  RR )
fsumharmonic.0  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <_  C )
fsumharmonic.1  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  T  <_ 
( A  /  n
) )  ->  ( abs `  B )  <_ 
( C  x.  n
) )
fsumharmonic.2  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( A  /  n )  < 
T )  ->  ( abs `  B )  <_  R )
Assertion
Ref Expression
fsumharmonic  |-  ( ph  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( B  /  n ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) C  +  ( R  x.  ( ( log `  T )  +  1 ) ) ) )
Distinct variable groups:    A, n    ph, n    R, n    T, n
Allowed substitution hints:    B( n)    C( n)

Proof of Theorem fsumharmonic
StepHypRef Expression
1 fzfid 12772 . . . 4  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  e.  Fin )
2 fsumharmonic.b . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  B  e.  CC )
3 elfznn 12370 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
43adantl 482 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
54nncnd 11036 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  CC )
64nnne0d 11065 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  =/=  0 )
72, 5, 6divcld 10801 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( B  /  n )  e.  CC )
81, 7fsumcl 14464 . . 3  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( B  /  n )  e.  CC )
98abscld 14175 . 2  |-  ( ph  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( B  /  n ) )  e.  RR )
102abscld 14175 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( abs `  B )  e.  RR )
1110, 4nndivred 11069 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  /  n )  e.  RR )
121, 11fsumrecl 14465 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( abs `  B
)  /  n )  e.  RR )
13 fsumharmonic.c . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  C  e.  RR )
141, 13fsumrecl 14465 . . 3  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) C  e.  RR )
15 fsumharmonic.r . . . . 5  |-  ( ph  ->  ( R  e.  RR  /\  0  <_  R )
)
1615simpld 475 . . . 4  |-  ( ph  ->  R  e.  RR )
17 fsumharmonic.t . . . . . . . 8  |-  ( ph  ->  ( T  e.  RR  /\  1  <_  T )
)
1817simpld 475 . . . . . . 7  |-  ( ph  ->  T  e.  RR )
19 0red 10041 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
20 1red 10055 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
21 0lt1 10550 . . . . . . . . 9  |-  0  <  1
2221a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <  1 )
2317simprd 479 . . . . . . . 8  |-  ( ph  ->  1  <_  T )
2419, 20, 18, 22, 23ltletrd 10197 . . . . . . 7  |-  ( ph  ->  0  <  T )
2518, 24elrpd 11869 . . . . . 6  |-  ( ph  ->  T  e.  RR+ )
2625relogcld 24369 . . . . 5  |-  ( ph  ->  ( log `  T
)  e.  RR )
2726, 20readdcld 10069 . . . 4  |-  ( ph  ->  ( ( log `  T
)  +  1 )  e.  RR )
2816, 27remulcld 10070 . . 3  |-  ( ph  ->  ( R  x.  (
( log `  T
)  +  1 ) )  e.  RR )
2914, 28readdcld 10069 . 2  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) C  +  ( R  x.  ( ( log `  T )  +  1 ) ) )  e.  RR )
301, 7fsumabs 14533 . . 3  |-  ( ph  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( B  /  n ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( abs `  ( B  /  n ) ) )
312, 5, 6absdivd 14194 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( abs `  ( B  /  n
) )  =  ( ( abs `  B
)  /  ( abs `  n ) ) )
324nnrpd 11870 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
3332rprege0d 11879 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( n  e.  RR  /\  0  <_  n ) )
34 absid 14036 . . . . . . 7  |-  ( ( n  e.  RR  /\  0  <_  n )  -> 
( abs `  n
)  =  n )
3533, 34syl 17 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( abs `  n )  =  n )
3635oveq2d 6666 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  / 
( abs `  n
) )  =  ( ( abs `  B
)  /  n ) )
3731, 36eqtrd 2656 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( abs `  ( B  /  n
) )  =  ( ( abs `  B
)  /  n ) )
3837sumeq2dv 14433 . . 3  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( abs `  ( B  /  n ) )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( abs `  B
)  /  n ) )
3930, 38breqtrd 4679 . 2  |-  ( ph  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( B  /  n ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( abs `  B
)  /  n ) )
40 fsumharmonic.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR+ )
4140, 25rpdivcld 11889 . . . . . . . . 9  |-  ( ph  ->  ( A  /  T
)  e.  RR+ )
4241rprege0d 11879 . . . . . . . 8  |-  ( ph  ->  ( ( A  /  T )  e.  RR  /\  0  <_  ( A  /  T ) ) )
43 flge0nn0 12621 . . . . . . . 8  |-  ( ( ( A  /  T
)  e.  RR  /\  0  <_  ( A  /  T ) )  -> 
( |_ `  ( A  /  T ) )  e.  NN0 )
4442, 43syl 17 . . . . . . 7  |-  ( ph  ->  ( |_ `  ( A  /  T ) )  e.  NN0 )
4544nn0red 11352 . . . . . 6  |-  ( ph  ->  ( |_ `  ( A  /  T ) )  e.  RR )
4645ltp1d 10954 . . . . 5  |-  ( ph  ->  ( |_ `  ( A  /  T ) )  <  ( ( |_
`  ( A  /  T ) )  +  1 ) )
47 fzdisj 12368 . . . . 5  |-  ( ( |_ `  ( A  /  T ) )  <  ( ( |_
`  ( A  /  T ) )  +  1 )  ->  (
( 1 ... ( |_ `  ( A  /  T ) ) )  i^i  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) )  =  (/) )
4846, 47syl 17 . . . 4  |-  ( ph  ->  ( ( 1 ... ( |_ `  ( A  /  T ) ) )  i^i  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) )  =  (/) )
49 nn0p1nn 11332 . . . . . . 7  |-  ( ( |_ `  ( A  /  T ) )  e.  NN0  ->  ( ( |_ `  ( A  /  T ) )  +  1 )  e.  NN )
5044, 49syl 17 . . . . . 6  |-  ( ph  ->  ( ( |_ `  ( A  /  T
) )  +  1 )  e.  NN )
51 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
5250, 51syl6eleq 2711 . . . . 5  |-  ( ph  ->  ( ( |_ `  ( A  /  T
) )  +  1 )  e.  ( ZZ>= ` 
1 ) )
5341rpred 11872 . . . . . 6  |-  ( ph  ->  ( A  /  T
)  e.  RR )
5440rpred 11872 . . . . . 6  |-  ( ph  ->  A  e.  RR )
5518, 24jca 554 . . . . . . . . 9  |-  ( ph  ->  ( T  e.  RR  /\  0  <  T ) )
5640rpregt0d 11878 . . . . . . . . 9  |-  ( ph  ->  ( A  e.  RR  /\  0  <  A ) )
57 lediv2 10913 . . . . . . . . 9  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( T  e.  RR  /\  0  < 
T )  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( 1  <_  T  <->  ( A  /  T )  <_  ( A  / 
1 ) ) )
5820, 22, 55, 56, 57syl211anc 1332 . . . . . . . 8  |-  ( ph  ->  ( 1  <_  T  <->  ( A  /  T )  <_  ( A  / 
1 ) ) )
5923, 58mpbid 222 . . . . . . 7  |-  ( ph  ->  ( A  /  T
)  <_  ( A  /  1 ) )
6054recnd 10068 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
6160div1d 10793 . . . . . . 7  |-  ( ph  ->  ( A  /  1
)  =  A )
6259, 61breqtrd 4679 . . . . . 6  |-  ( ph  ->  ( A  /  T
)  <_  A )
63 flword2 12614 . . . . . 6  |-  ( ( ( A  /  T
)  e.  RR  /\  A  e.  RR  /\  ( A  /  T )  <_  A )  ->  ( |_ `  A )  e.  ( ZZ>= `  ( |_ `  ( A  /  T
) ) ) )
6453, 54, 62, 63syl3anc 1326 . . . . 5  |-  ( ph  ->  ( |_ `  A
)  e.  ( ZZ>= `  ( |_ `  ( A  /  T ) ) ) )
65 fzsplit2 12366 . . . . 5  |-  ( ( ( ( |_ `  ( A  /  T
) )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  ( |_ `  ( A  /  T
) ) ) )  ->  ( 1 ... ( |_ `  A
) )  =  ( ( 1 ... ( |_ `  ( A  /  T ) ) )  u.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ) )
6652, 64, 65syl2anc 693 . . . 4  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  =  ( ( 1 ... ( |_ `  ( A  /  T
) ) )  u.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) ) )
6711recnd 10068 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  /  n )  e.  CC )
6848, 66, 1, 67fsumsplit 14471 . . 3  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( abs `  B
)  /  n )  =  ( sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( ( abs `  B
)  /  n )  +  sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n ) ) )
69 fzfid 12772 . . . . 5  |-  ( ph  ->  ( 1 ... ( |_ `  ( A  /  T ) ) )  e.  Fin )
70 ssun1 3776 . . . . . . . 8  |-  ( 1 ... ( |_ `  ( A  /  T
) ) )  C_  ( ( 1 ... ( |_ `  ( A  /  T ) ) )  u.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) )
7170, 66syl5sseqr 3654 . . . . . . 7  |-  ( ph  ->  ( 1 ... ( |_ `  ( A  /  T ) ) ) 
C_  ( 1 ... ( |_ `  A
) ) )
7271sselda 3603 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  n  e.  ( 1 ... ( |_ `  A ) ) )
7372, 11syldan 487 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( ( abs `  B )  /  n )  e.  RR )
7469, 73fsumrecl 14465 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) ( ( abs `  B
)  /  n )  e.  RR )
75 fzfid 12772 . . . . 5  |-  ( ph  ->  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) )  e.  Fin )
76 ssun2 3777 . . . . . . . 8  |-  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) )  C_  (
( 1 ... ( |_ `  ( A  /  T ) ) )  u.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) )
7776, 66syl5sseqr 3654 . . . . . . 7  |-  ( ph  ->  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) 
C_  ( 1 ... ( |_ `  A
) ) )
7877sselda 3603 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  n  e.  ( 1 ... ( |_ `  A ) ) )
7978, 11syldan 487 . . . . 5  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  /  n )  e.  RR )
8075, 79fsumrecl 14465 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n )  e.  RR )
8172, 13syldan 487 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  C  e.  RR )
8269, 81fsumrecl 14465 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) C  e.  RR )
83 fznnfl 12661 . . . . . . . . . . 11  |-  ( ( A  /  T )  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) )  <->  ( n  e.  NN  /\  n  <_ 
( A  /  T
) ) ) )
8453, 83syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) )  <-> 
( n  e.  NN  /\  n  <_  ( A  /  T ) ) ) )
8584simplbda 654 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  n  <_  ( A  /  T ) )
8632rpred 11872 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR )
8754adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
8855adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( T  e.  RR  /\  0  < 
T ) )
89 lemuldiv2 10904 . . . . . . . . . . . 12  |-  ( ( n  e.  RR  /\  A  e.  RR  /\  ( T  e.  RR  /\  0  <  T ) )  -> 
( ( T  x.  n )  <_  A  <->  n  <_  ( A  /  T ) ) )
9086, 87, 88, 89syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( T  x.  n )  <_  A  <->  n  <_  ( A  /  T ) ) )
9118adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  T  e.  RR )
9291, 87, 32lemuldivd 11921 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( T  x.  n )  <_  A  <->  T  <_  ( A  /  n ) ) )
9390, 92bitr3d 270 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( n  <_  ( A  /  T
)  <->  T  <_  ( A  /  n ) ) )
9472, 93syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( n  <_  ( A  /  T
)  <->  T  <_  ( A  /  n ) ) )
9585, 94mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  T  <_  ( A  /  n ) )
96 fsumharmonic.1 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  T  <_ 
( A  /  n
) )  ->  ( abs `  B )  <_ 
( C  x.  n
) )
9796ex 450 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( T  <_  ( A  /  n
)  ->  ( abs `  B )  <_  ( C  x.  n )
) )
9872, 97syldan 487 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( T  <_  ( A  /  n
)  ->  ( abs `  B )  <_  ( C  x.  n )
) )
9995, 98mpd 15 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( abs `  B )  <_  ( C  x.  n )
)
10072, 2syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  B  e.  CC )
101100abscld 14175 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( abs `  B )  e.  RR )
10272, 3syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  n  e.  NN )
103102nnrpd 11870 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  n  e.  RR+ )
104101, 81, 103ledivmul2d 11926 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( (
( abs `  B
)  /  n )  <_  C  <->  ( abs `  B )  <_  ( C  x.  n )
) )
10599, 104mpbird 247 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( ( abs `  B )  /  n )  <_  C
)
10669, 73, 81, 105fsumle 14531 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) ( ( abs `  B
)  /  n )  <_  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) C )
107 fsumharmonic.0 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <_  C )
1081, 13, 107, 71fsumless 14528 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) C  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) ) C )
10974, 82, 14, 106, 108letrd 10194 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) ( ( abs `  B
)  /  n )  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) ) C )
11078, 3syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  n  e.  NN )
111110nnrecred 11066 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( 1  /  n )  e.  RR )
11275, 111fsumrecl 14465 . . . . . 6  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
)  e.  RR )
11316, 112remulcld 10070 . . . . 5  |-  ( ph  ->  ( R  x.  sum_ n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n ) )  e.  RR )
11416adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  R  e.  RR )
115114recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  R  e.  CC )
116110nncnd 11036 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  n  e.  CC )
117110nnne0d 11065 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  n  =/=  0 )
118115, 116, 117divrecd 10804 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( R  /  n )  =  ( R  x.  ( 1  /  n ) ) )
119114, 110nndivred 11069 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( R  /  n )  e.  RR )
120118, 119eqeltrrd 2702 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( R  x.  ( 1  /  n
) )  e.  RR )
12178, 10syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( abs `  B )  e.  RR )
12278, 32syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
123 noel 3919 . . . . . . . . . . . . . . . 16  |-  -.  n  e.  (/)
124 elin 3796 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ( 1 ... ( |_ `  ( A  /  T
) ) )  i^i  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  <->  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  /\  n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ) )
12548eleq2d 2687 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( n  e.  ( ( 1 ... ( |_ `  ( A  /  T ) ) )  i^i  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) )  <->  n  e.  (/) ) )
126124, 125syl5bbr 274 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  /\  n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) )  <->  n  e.  (/) ) )
127123, 126mtbiri 317 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  /\  n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ) )
128 imnan 438 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) )  ->  -.  n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) )  <->  -.  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  /\  n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ) )
129127, 128sylibr 224 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) )  ->  -.  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) ) )
130129con2d 129 . . . . . . . . . . . . 13  |-  ( ph  ->  ( n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) )  ->  -.  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ) )
131130imp 445 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  -.  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )
13283baibd 948 . . . . . . . . . . . . . . 15  |-  ( ( ( A  /  T
)  e.  RR  /\  n  e.  NN )  ->  ( n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) )  <-> 
n  <_  ( A  /  T ) ) )
13353, 3, 132syl2an 494 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  <-> 
n  <_  ( A  /  T ) ) )
134133, 93bitrd 268 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  <-> 
T  <_  ( A  /  n ) ) )
13578, 134syldan 487 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  <-> 
T  <_  ( A  /  n ) ) )
136131, 135mtbid 314 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  -.  T  <_  ( A  /  n
) )
13754adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  A  e.  RR )
138137, 110nndivred 11069 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( A  /  n )  e.  RR )
13918adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  T  e.  RR )
140138, 139ltnled 10184 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( ( A  /  n )  < 
T  <->  -.  T  <_  ( A  /  n ) ) )
141136, 140mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( A  /  n )  <  T
)
142 fsumharmonic.2 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( A  /  n )  < 
T )  ->  ( abs `  B )  <_  R )
143142ex 450 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  /  n )  < 
T  ->  ( abs `  B )  <_  R
) )
14478, 143syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( ( A  /  n )  < 
T  ->  ( abs `  B )  <_  R
) )
145141, 144mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( abs `  B )  <_  R
)
146121, 114, 122, 145lediv1dd 11930 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  /  n )  <_  ( R  /  n ) )
147146, 118breqtrd 4679 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  /  n )  <_  ( R  x.  ( 1  /  n ) ) )
14875, 79, 120, 147fsumle 14531 . . . . . 6  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n )  <_  sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( R  x.  (
1  /  n ) ) )
14916recnd 10068 . . . . . . 7  |-  ( ph  ->  R  e.  CC )
150111recnd 10068 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( 1  /  n )  e.  CC )
15175, 149, 150fsummulc2 14516 . . . . . 6  |-  ( ph  ->  ( R  x.  sum_ n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n ) )  =  sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( R  x.  (
1  /  n ) ) )
152148, 151breqtrrd 4681 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n )  <_  ( R  x.  sum_
n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n ) ) )
1534nnrecred 11066 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  n )  e.  RR )
154153recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  n )  e.  CC )
15548, 66, 1, 154fsumsplit 14471 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( 1  /  n )  =  ( sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) ( 1  /  n
) ) )
156155oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) ( 1  /  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n ) ) )
157102nnrecred 11066 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( 1  /  n )  e.  RR )
15869, 157fsumrecl 14465 . . . . . . . . . 10  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n )  e.  RR )
159158recnd 10068 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n )  e.  CC )
160112recnd 10068 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
)  e.  CC )
161159, 160pncan2d 10394 . . . . . . . 8  |-  ( ph  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) ( 1  /  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n ) )  = 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
) )
162156, 161eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )  =  sum_ n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n ) )
1631, 153fsumrecl 14465 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( 1  /  n )  e.  RR )
164163adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  1 )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n
)  e.  RR )
165158adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  1 )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
)  e.  RR )
166164, 165resubcld 10458 . . . . . . . . 9  |-  ( (
ph  /\  A  <  1 )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  e.  RR )
167 0red 10041 . . . . . . . . 9  |-  ( (
ph  /\  A  <  1 )  ->  0  e.  RR )
16827adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  A  <  1 )  ->  (
( log `  T
)  +  1 )  e.  RR )
169 fzfid 12772 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  1 )  ->  (
1 ... ( |_ `  ( A  /  T
) ) )  e. 
Fin )
170103adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  <  1 )  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  n  e.  RR+ )
171170rpreccld 11882 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  <  1 )  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( 1  /  n )  e.  RR+ )
172171rpred 11872 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  <  1 )  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( 1  /  n )  e.  RR )
173171rpge0d 11876 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  <  1 )  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  0  <_  ( 1  /  n ) )
17440adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A  <  1 )  ->  A  e.  RR+ )
175174rpge0d 11876 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  <  1 )  ->  0  <_  A )
176 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A  <  1 )  ->  A  <  1 )
177 0p1e1 11132 . . . . . . . . . . . . . . . 16  |-  ( 0  +  1 )  =  1
178176, 177syl6breqr 4695 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  <  1 )  ->  A  <  ( 0  +  1 ) )
17954adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A  <  1 )  ->  A  e.  RR )
180 0z 11388 . . . . . . . . . . . . . . . 16  |-  0  e.  ZZ
181 flbi 12617 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  0  e.  ZZ )  ->  ( ( |_ `  A )  =  0  <-> 
( 0  <_  A  /\  A  <  ( 0  +  1 ) ) ) )
182179, 180, 181sylancl 694 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  <  1 )  ->  (
( |_ `  A
)  =  0  <->  (
0  <_  A  /\  A  <  ( 0  +  1 ) ) ) )
183175, 178, 182mpbir2and 957 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  <  1 )  ->  ( |_ `  A )  =  0 )
184183oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  <  1 )  ->  (
1 ... ( |_ `  A ) )  =  ( 1 ... 0
) )
185 fz10 12362 . . . . . . . . . . . . 13  |-  ( 1 ... 0 )  =  (/)
186184, 185syl6eq 2672 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  1 )  ->  (
1 ... ( |_ `  A ) )  =  (/) )
187 0ss 3972 . . . . . . . . . . . 12  |-  (/)  C_  (
1 ... ( |_ `  ( A  /  T
) ) )
188186, 187syl6eqss 3655 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  1 )  ->  (
1 ... ( |_ `  A ) )  C_  ( 1 ... ( |_ `  ( A  /  T ) ) ) )
189169, 172, 173, 188fsumless 14528 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  1 )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n
)  <_  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )
190164, 165suble0d 10618 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  1 )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )  <_  0  <->  sum_
n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  <_  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) ) )
191189, 190mpbird 247 . . . . . . . . 9  |-  ( (
ph  /\  A  <  1 )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  <_  0
)
19218, 23logge0d 24376 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  ( log `  T ) )
193 0le1 10551 . . . . . . . . . . . 12  |-  0  <_  1
194193a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  1 )
19526, 20, 192, 194addge0d 10603 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( ( log `  T )  +  1 ) )
196195adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  A  <  1 )  ->  0  <_  ( ( log `  T
)  +  1 ) )
197166, 167, 168, 191, 196letrd 10194 . . . . . . . 8  |-  ( (
ph  /\  A  <  1 )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  <_  (
( log `  T
)  +  1 ) )
198 harmonicubnd 24736 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  <_  ( ( log `  A )  +  1 ) )
19954, 198sylan 488 . . . . . . . . . 10  |-  ( (
ph  /\  1  <_  A )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n
)  <_  ( ( log `  A )  +  1 ) )
200 harmoniclbnd 24735 . . . . . . . . . . . 12  |-  ( ( A  /  T )  e.  RR+  ->  ( log `  ( A  /  T
) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )
20141, 200syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  ( A  /  T ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )
202201adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  1  <_  A )  ->  ( log `  ( A  /  T
) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )
20340relogcld 24369 . . . . . . . . . . . . 13  |-  ( ph  ->  ( log `  A
)  e.  RR )
204 peano2re 10209 . . . . . . . . . . . . 13  |-  ( ( log `  A )  e.  RR  ->  (
( log `  A
)  +  1 )  e.  RR )
205203, 204syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( log `  A
)  +  1 )  e.  RR )
20641relogcld 24369 . . . . . . . . . . . 12  |-  ( ph  ->  ( log `  ( A  /  T ) )  e.  RR )
207 le2sub 10527 . . . . . . . . . . . 12  |-  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  n
)  e.  RR  /\  sum_
n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n )  e.  RR )  /\  ( ( ( log `  A )  +  1 )  e.  RR  /\  ( log `  ( A  /  T ) )  e.  RR ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  n )  <_ 
( ( log `  A
)  +  1 )  /\  ( log `  ( A  /  T ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  <_  (
( ( log `  A
)  +  1 )  -  ( log `  ( A  /  T ) ) ) ) )
208163, 158, 205, 206, 207syl22anc 1327 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n
)  <_  ( ( log `  A )  +  1 )  /\  ( log `  ( A  /  T ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n ) )  <_  ( (
( log `  A
)  +  1 )  -  ( log `  ( A  /  T ) ) ) ) )
209208adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  1  <_  A )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  <_  ( ( log `  A )  +  1 )  /\  ( log `  ( A  /  T
) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  <_  (
( ( log `  A
)  +  1 )  -  ( log `  ( A  /  T ) ) ) ) )
210199, 202, 209mp2and 715 . . . . . . . . 9  |-  ( (
ph  /\  1  <_  A )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n ) )  <_  ( (
( log `  A
)  +  1 )  -  ( log `  ( A  /  T ) ) ) )
211203recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  ( log `  A
)  e.  CC )
21220recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
21326recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  ( log `  T
)  e.  CC )
214211, 212, 213pnncand 10431 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( log `  A )  +  1 )  -  ( ( log `  A )  -  ( log `  T
) ) )  =  ( 1  +  ( log `  T ) ) )
21540, 25relogdivd 24372 . . . . . . . . . . . 12  |-  ( ph  ->  ( log `  ( A  /  T ) )  =  ( ( log `  A )  -  ( log `  T ) ) )
216215oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( log `  A )  +  1 )  -  ( log `  ( A  /  T
) ) )  =  ( ( ( log `  A )  +  1 )  -  ( ( log `  A )  -  ( log `  T
) ) ) )
217 ax-1cn 9994 . . . . . . . . . . . 12  |-  1  e.  CC
218 addcom 10222 . . . . . . . . . . . 12  |-  ( ( ( log `  T
)  e.  CC  /\  1  e.  CC )  ->  ( ( log `  T
)  +  1 )  =  ( 1  +  ( log `  T
) ) )
219213, 217, 218sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  ( ( log `  T
)  +  1 )  =  ( 1  +  ( log `  T
) ) )
220214, 216, 2193eqtr4d 2666 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  A )  +  1 )  -  ( log `  ( A  /  T
) ) )  =  ( ( log `  T
)  +  1 ) )
221220adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  1  <_  A )  ->  ( (
( log `  A
)  +  1 )  -  ( log `  ( A  /  T ) ) )  =  ( ( log `  T )  +  1 ) )
222210, 221breqtrd 4679 . . . . . . . 8  |-  ( (
ph  /\  1  <_  A )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n ) )  <_  ( ( log `  T )  +  1 ) )
223197, 222, 54, 20ltlecasei 10145 . . . . . . 7  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )  <_  (
( log `  T
)  +  1 ) )
224162, 223eqbrtrrd 4677 . . . . . 6  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
)  <_  ( ( log `  T )  +  1 ) )
225 lemul2a 10878 . . . . . 6  |-  ( ( ( sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
)  e.  RR  /\  ( ( log `  T
)  +  1 )  e.  RR  /\  ( R  e.  RR  /\  0  <_  R ) )  /\  sum_
n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n )  <_ 
( ( log `  T
)  +  1 ) )  ->  ( R  x.  sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
) )  <_  ( R  x.  ( ( log `  T )  +  1 ) ) )
226112, 27, 15, 224, 225syl31anc 1329 . . . . 5  |-  ( ph  ->  ( R  x.  sum_ n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n ) )  <_  ( R  x.  ( ( log `  T
)  +  1 ) ) )
22780, 113, 28, 152, 226letrd 10194 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n )  <_  ( R  x.  ( ( log `  T
)  +  1 ) ) )
22874, 80, 14, 28, 109, 227le2addd 10646 . . 3  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( ( abs `  B
)  /  n )  +  sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) C  +  ( R  x.  (
( log `  T
)  +  1 ) ) ) )
22968, 228eqbrtrd 4675 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( abs `  B
)  /  n )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) C  +  ( R  x.  ( ( log `  T )  +  1 ) ) ) )
2309, 12, 29, 39, 229letrd 10194 1  |-  ( ph  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( B  /  n ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) C  +  ( R  x.  ( ( log `  T )  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572    i^i cin 3573   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   |_cfl 12591   abscabs 13974   sum_csu 14416   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-em 24719
This theorem is referenced by:  dchrvmasumlem2  25187  mulog2sumlem2  25224
  Copyright terms: Public domain W3C validator