MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem3 Structured version   Visualization version   Unicode version

Theorem chebbnd1lem3 25160
Description: Lemma for chebbnd1 25161: get a lower bound on π ( N )  /  ( N  /  log ( N ) ) that is independent of  N. (Contributed by Mario Carneiro, 21-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1  |-  M  =  ( |_ `  ( N  /  2 ) )
Assertion
Ref Expression
chebbnd1lem3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (π `  N )  x.  (
( log `  N
)  /  N ) ) )

Proof of Theorem chebbnd1lem3
StepHypRef Expression
1 2rp 11837 . . . . . 6  |-  2  e.  RR+
2 relogcl 24322 . . . . . 6  |-  ( 2  e.  RR+  ->  ( log `  2 )  e.  RR )
31, 2ax-mp 5 . . . . 5  |-  ( log `  2 )  e.  RR
4 1re 10039 . . . . . 6  |-  1  e.  RR
5 2re 11090 . . . . . . 7  |-  2  e.  RR
6 ere 14819 . . . . . . 7  |-  _e  e.  RR
75, 6remulcli 10054 . . . . . 6  |-  ( 2  x.  _e )  e.  RR
8 2pos 11112 . . . . . . . 8  |-  0  <  2
9 epos 14935 . . . . . . . 8  |-  0  <  _e
105, 6, 8, 9mulgt0ii 10170 . . . . . . 7  |-  0  <  ( 2  x.  _e )
117, 10gt0ne0ii 10564 . . . . . 6  |-  ( 2  x.  _e )  =/=  0
124, 7, 11redivcli 10792 . . . . 5  |-  ( 1  /  ( 2  x.  _e ) )  e.  RR
133, 12resubcli 10343 . . . 4  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  RR
14 2ne0 11113 . . . 4  |-  2  =/=  0
1513, 5, 14redivcli 10792 . . 3  |-  ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  /  2 )  e.  RR
1615a1i 11 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  e.  RR )
175a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  RR )
18 8re 11105 . . . . . . . 8  |-  8  e.  RR
1918a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
8  e.  RR )
20 simpl 473 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  N  e.  RR )
21 2lt8 11220 . . . . . . . . 9  |-  2  <  8
225, 18, 21ltleii 10160 . . . . . . . 8  |-  2  <_  8
2322a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  <_  8 )
24 simpr 477 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
8  <_  N )
2517, 19, 20, 23, 24letrd 10194 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  <_  N )
26 ppinncl 24900 . . . . . 6  |-  ( ( N  e.  RR  /\  2  <_  N )  -> 
(π `  N )  e.  NN )
2725, 26syldan 487 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  N )  e.  NN )
2827nnred 11035 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  N )  e.  RR )
29 chebbnd1lem2.1 . . . . . . . . . 10  |-  M  =  ( |_ `  ( N  /  2 ) )
30 rehalfcl 11258 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  ( N  /  2 )  e.  RR )
3130adantr 481 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( N  /  2
)  e.  RR )
3231flcld 12599 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( |_ `  ( N  /  2 ) )  e.  ZZ )
3329, 32syl5eqel 2705 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  ZZ )
3433zred 11482 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  RR )
35 remulcl 10021 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  M  e.  RR )  ->  ( 2  x.  M
)  e.  RR )
365, 34, 35sylancr 695 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  RR )
374a1i 11 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  e.  RR )
38 1lt2 11194 . . . . . . . . 9  |-  1  <  2
3938a1i 11 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  <  2 )
40 2t1e2 11176 . . . . . . . . 9  |-  ( 2  x.  1 )  =  2
41 4nn 11187 . . . . . . . . . . . 12  |-  4  e.  NN
42 4z 11411 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
4342a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  e.  ZZ )
44 4t2e8 11181 . . . . . . . . . . . . . . . . 17  |-  ( 4  x.  2 )  =  8
4544, 24syl5eqbr 4688 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4  x.  2 )  <_  N )
46 4re 11097 . . . . . . . . . . . . . . . . . 18  |-  4  e.  RR
4746a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  e.  RR )
488a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  2 )
49 lemuldiv 10903 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 4  x.  2 )  <_  N 
<->  4  <_  ( N  /  2 ) ) )
5047, 20, 17, 48, 49syl112anc 1330 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 4  x.  2 )  <_  N  <->  4  <_  ( N  / 
2 ) ) )
5145, 50mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  ( N  /  2 ) )
52 flge 12606 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  /  2
)  e.  RR  /\  4  e.  ZZ )  ->  ( 4  <_  ( N  /  2 )  <->  4  <_  ( |_ `  ( N  /  2 ) ) ) )
5331, 42, 52sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4  <_  ( N  /  2 )  <->  4  <_  ( |_ `  ( N  /  2 ) ) ) )
5451, 53mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  ( |_ `  ( N  /  2
) ) )
5554, 29syl6breqr 4695 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  M )
56 eluz2 11693 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  4
)  <->  ( 4  e.  ZZ  /\  M  e.  ZZ  /\  4  <_  M ) )
5743, 33, 55, 56syl3anbrc 1246 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  ( ZZ>= ` 
4 ) )
58 eluznn 11758 . . . . . . . . . . . 12  |-  ( ( 4  e.  NN  /\  M  e.  ( ZZ>= ` 
4 ) )  ->  M  e.  NN )
5941, 57, 58sylancr 695 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  NN )
6059nnge1d 11063 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  <_  M )
61 lemul2 10876 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  M  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 1  <_  M 
<->  ( 2  x.  1 )  <_  ( 2  x.  M ) ) )
6237, 34, 17, 48, 61syl112anc 1330 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 1  <_  M  <->  ( 2  x.  1 )  <_  ( 2  x.  M ) ) )
6360, 62mpbid 222 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  1 )  <_  ( 2  x.  M ) )
6440, 63syl5eqbrr 4689 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  <_  ( 2  x.  M ) )
6537, 17, 36, 39, 64ltletrd 10197 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  <  ( 2  x.  M ) )
6636, 65rplogcld 24375 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2  x.  M ) )  e.  RR+ )
6766rpred 11872 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2  x.  M ) )  e.  RR )
68 2nn 11185 . . . . . 6  |-  2  e.  NN
69 nnmulcl 11043 . . . . . 6  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
7068, 59, 69sylancr 695 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  NN )
7167, 70nndivred 11069 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  e.  RR )
7228, 71remulcld 10070 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR )
73 rehalfcl 11258 . . 3  |-  ( ( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR  ->  ( ( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  e.  RR )
7472, 73syl 17 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  e.  RR )
75 0red 10041 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  e.  RR )
76 8pos 11121 . . . . . . . 8  |-  0  <  8
7776a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  8 )
7875, 19, 20, 77, 24ltletrd 10197 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  N )
7920, 78elrpd 11869 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  N  e.  RR+ )
8079relogcld 24369 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  N
)  e.  RR )
8180, 79rerpdivcld 11903 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  N
)  /  N )  e.  RR )
8228, 81remulcld 10070 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  N
)  /  N ) )  e.  RR )
8313a1i 11 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR )
84 ppinncl 24900 . . . . . . 7  |-  ( ( ( 2  x.  M
)  e.  RR  /\  2  <_  ( 2  x.  M ) )  -> 
(π `  ( 2  x.  M ) )  e.  NN )
8536, 64, 84syl2anc 693 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  e.  NN )
8685nnred 11035 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  e.  RR )
8786, 71remulcld 10070 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR )
88 remulcl 10021 . . . . . . . 8  |-  ( ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR  /\  (
2  x.  M )  e.  RR )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  e.  RR )
8913, 36, 88sylancr 695 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  e.  RR )
90 4pos 11116 . . . . . . . . . . 11  |-  0  <  4
9146, 90elrpii 11835 . . . . . . . . . 10  |-  4  e.  RR+
92 rpexpcl 12879 . . . . . . . . . 10  |-  ( ( 4  e.  RR+  /\  M  e.  ZZ )  ->  (
4 ^ M )  e.  RR+ )
9391, 33, 92sylancr 695 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4 ^ M
)  e.  RR+ )
9459nnrpd 11870 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  RR+ )
9593, 94rpdivcld 11889 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 4 ^ M )  /  M
)  e.  RR+ )
9695relogcld 24369 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
( 4 ^ M
)  /  M ) )  e.  RR )
9786, 67remulcld 10070 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  e.  RR )
9894relogcld 24369 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  M
)  e.  RR )
99 epr 14936 . . . . . . . . . 10  |-  _e  e.  RR+
100 rerpdivcl 11861 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  _e  e.  RR+ )  ->  ( M  /  _e )  e.  RR )
10134, 99, 100sylancl 694 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( M  /  _e )  e.  RR )
10293relogcld 24369 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
4 ^ M ) )  e.  RR )
1036a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  e.  RR )
104 egt2lt3 14934 . . . . . . . . . . . . . . . . . 18  |-  ( 2  <  _e  /\  _e  <  3 )
105104simpri 478 . . . . . . . . . . . . . . . . 17  |-  _e  <  3
106 3lt4 11197 . . . . . . . . . . . . . . . . 17  |-  3  <  4
107 3re 11094 . . . . . . . . . . . . . . . . . 18  |-  3  e.  RR
1086, 107, 46lttri 10163 . . . . . . . . . . . . . . . . 17  |-  ( ( _e  <  3  /\  3  <  4 )  ->  _e  <  4
)
109105, 106, 108mp2an 708 . . . . . . . . . . . . . . . 16  |-  _e  <  4
110109a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <  4 )
111103, 47, 34, 110, 55ltletrd 10197 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <  M )
112103, 34, 111ltled 10185 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <_  M )
1136leidi 10562 . . . . . . . . . . . . . . . 16  |-  _e  <_  _e
114 logdivlt 24367 . . . . . . . . . . . . . . . 16  |-  ( ( ( _e  e.  RR  /\  _e  <_  _e )  /\  ( M  e.  RR  /\  _e  <_  M )
)  ->  ( _e  <  M  <->  ( ( log `  M )  /  M
)  <  ( ( log `  _e )  /  _e ) ) )
1156, 113, 114mpanl12 718 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  _e  <_  M )  -> 
( _e  <  M  <->  ( ( log `  M
)  /  M )  <  ( ( log `  _e )  /  _e ) ) )
11634, 112, 115syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( _e  <  M  <->  ( ( log `  M
)  /  M )  <  ( ( log `  _e )  /  _e ) ) )
117111, 116mpbid 222 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  /  M )  <  ( ( log `  _e )  /  _e ) )
118 loge 24333 . . . . . . . . . . . . . 14  |-  ( log `  _e )  =  1
119118oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( log `  _e )  /  _e )  =  ( 1  /  _e )
120117, 119syl6breq 4694 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  /  M )  <  ( 1  /  _e ) )
1216, 9pm3.2i 471 . . . . . . . . . . . . . 14  |-  ( _e  e.  RR  /\  0  <  _e )
122121a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( _e  e.  RR  /\  0  <  _e ) )
12359nngt0d 11064 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  M )
12434, 123jca 554 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( M  e.  RR  /\  0  <  M ) )
125 lt2mul2div 10901 . . . . . . . . . . . . 13  |-  ( ( ( ( log `  M
)  e.  RR  /\  ( _e  e.  RR  /\  0  <  _e ) )  /\  ( 1  e.  RR  /\  ( M  e.  RR  /\  0  <  M ) ) )  ->  ( ( ( log `  M )  x.  _e )  < 
( 1  x.  M
)  <->  ( ( log `  M )  /  M
)  <  ( 1  /  _e ) ) )
12698, 122, 37, 124, 125syl22anc 1327 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  M )  x.  _e )  <  ( 1  x.  M )  <->  ( ( log `  M )  /  M )  <  (
1  /  _e ) ) )
127120, 126mpbird 247 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  x.  _e )  <  ( 1  x.  M ) )
12834recnd 10068 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  CC )
129128mulid2d 10058 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 1  x.  M
)  =  M )
130127, 129breqtrd 4679 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  x.  _e )  <  M )
131 ltmuldiv 10896 . . . . . . . . . . 11  |-  ( ( ( log `  M
)  e.  RR  /\  M  e.  RR  /\  (
_e  e.  RR  /\  0  <  _e ) )  ->  ( ( ( log `  M )  x.  _e )  < 
M  <->  ( log `  M
)  <  ( M  /  _e ) ) )
13298, 34, 122, 131syl3anc 1326 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  M )  x.  _e )  <  M  <->  ( log `  M )  <  ( M  /  _e ) ) )
133130, 132mpbid 222 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  M
)  <  ( M  /  _e ) )
13498, 101, 102, 133ltsub2dd 10640 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
4 ^ M ) )  -  ( M  /  _e ) )  <  ( ( log `  ( 4 ^ M
) )  -  ( log `  M ) ) )
1353recni 10052 . . . . . . . . . . 11  |-  ( log `  2 )  e.  CC
136135a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  2
)  e.  CC )
13712recni 10052 . . . . . . . . . . 11  |-  ( 1  /  ( 2  x.  _e ) )  e.  CC
138137a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 1  /  (
2  x.  _e ) )  e.  CC )
13970nnrpd 11870 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  RR+ )
140139rpcnd 11874 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  CC )
141136, 138, 140subdird 10487 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  =  ( ( ( log `  2
)  x.  ( 2  x.  M ) )  -  ( ( 1  /  ( 2  x.  _e ) )  x.  ( 2  x.  M
) ) ) )
142136, 140mulcomd 10061 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  x.  ( 2  x.  M ) )  =  ( ( 2  x.  M )  x.  ( log `  2
) ) )
143 2z 11409 . . . . . . . . . . . . 13  |-  2  e.  ZZ
144 zmulcl 11426 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  x.  M
)  e.  ZZ )
145143, 33, 144sylancr 695 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  ZZ )
146 relogexp 24342 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  (
2  x.  M )  e.  ZZ )  -> 
( log `  (
2 ^ ( 2  x.  M ) ) )  =  ( ( 2  x.  M )  x.  ( log `  2
) ) )
1471, 145, 146sylancr 695 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2 ^ ( 2  x.  M ) ) )  =  ( ( 2  x.  M )  x.  ( log `  2
) ) )
148 2cnd 11093 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  CC )
14959nnnn0d 11351 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  NN0 )
150 2nn0 11309 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
151150a1i 11 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  NN0 )
152148, 149, 151expmuld 13011 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2 ^ (
2  x.  M ) )  =  ( ( 2 ^ 2 ) ^ M ) )
153 sq2 12960 . . . . . . . . . . . . . 14  |-  ( 2 ^ 2 )  =  4
154153oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 2 ) ^ M )  =  ( 4 ^ M
)
155152, 154syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2 ^ (
2  x.  M ) )  =  ( 4 ^ M ) )
156155fveq2d 6195 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2 ^ ( 2  x.  M ) ) )  =  ( log `  ( 4 ^ M
) ) )
157142, 147, 1563eqtr2d 2662 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  x.  ( 2  x.  M ) )  =  ( log `  (
4 ^ M ) ) )
1587recni 10052 . . . . . . . . . . . . 13  |-  ( 2  x.  _e )  e.  CC
159158a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  _e )  e.  CC )
16011a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  _e )  =/=  0 )
161140, 159, 160divrec2d 10805 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  /  (
2  x.  _e ) )  =  ( ( 1  /  ( 2  x.  _e ) )  x.  ( 2  x.  M ) ) )
1626recni 10052 . . . . . . . . . . . . 13  |-  _e  e.  CC
163162a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  e.  CC )
1646, 9gt0ne0ii 10564 . . . . . . . . . . . . 13  |-  _e  =/=  0
165164a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  =/=  0 )
16614a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  =/=  0 )
167128, 163, 148, 165, 166divcan5d 10827 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  /  (
2  x.  _e ) )  =  ( M  /  _e ) )
168161, 167eqtr3d 2658 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 1  / 
( 2  x.  _e ) )  x.  (
2  x.  M ) )  =  ( M  /  _e ) )
169157, 168oveq12d 6668 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  x.  ( 2  x.  M
) )  -  (
( 1  /  (
2  x.  _e ) )  x.  ( 2  x.  M ) ) )  =  ( ( log `  ( 4 ^ M ) )  -  ( M  /  _e ) ) )
170141, 169eqtrd 2656 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  =  ( ( log `  ( 4 ^ M ) )  -  ( M  /  _e ) ) )
17193, 94relogdivd 24372 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
( 4 ^ M
)  /  M ) )  =  ( ( log `  ( 4 ^ M ) )  -  ( log `  M
) ) )
172134, 170, 1713brtr4d 4685 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  <  ( log `  ( ( 4 ^ M )  /  M
) ) )
173 eqid 2622 . . . . . . . . 9  |-  if ( ( 2  x.  M
)  <_  ( (
2  x.  M )  _C  M ) ,  ( 2  x.  M
) ,  ( ( 2  x.  M )  _C  M ) )  =  if ( ( 2  x.  M )  <_  ( ( 2  x.  M )  _C  M ) ,  ( 2  x.  M ) ,  ( ( 2  x.  M )  _C  M ) )
174173chebbnd1lem1 25158 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ M )  /  M
) )  <  (
(π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) ) )
17557, 174syl 17 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
( 4 ^ M
)  /  M ) )  <  ( (π `  ( 2  x.  M
) )  x.  ( log `  ( 2  x.  M ) ) ) )
17689, 96, 97, 172, 175lttrd 10198 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  <  ( (π `  ( 2  x.  M
) )  x.  ( log `  ( 2  x.  M ) ) ) )
17783, 97, 139ltmuldivd 11919 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  x.  ( 2  x.  M
) )  <  (
(π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  <->  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  <  (
( (π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  /  (
2  x.  M ) ) ) )
178176, 177mpbid 222 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( ( (π `  ( 2  x.  M
) )  x.  ( log `  ( 2  x.  M ) ) )  /  ( 2  x.  M ) ) )
17986recnd 10068 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  e.  CC )
18066rpcnd 11874 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2  x.  M ) )  e.  CC )
181139rpcnne0d 11881 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  e.  CC  /\  ( 2  x.  M
)  =/=  0 ) )
182 divass 10703 . . . . . 6  |-  ( ( (π `  ( 2  x.  M ) )  e.  CC  /\  ( log `  ( 2  x.  M
) )  e.  CC  /\  ( ( 2  x.  M )  e.  CC  /\  ( 2  x.  M
)  =/=  0 ) )  ->  ( (
(π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  /  (
2  x.  M ) )  =  ( (π `  ( 2  x.  M
) )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) )
183179, 180, 181, 182syl3anc 1326 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( (π `  (
2  x.  M ) )  x.  ( log `  ( 2  x.  M
) ) )  / 
( 2  x.  M
) )  =  ( (π `  ( 2  x.  M ) )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) )
184178, 183breqtrd 4679 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( (π `  (
2  x.  M ) )  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) ) )
185 flle 12600 . . . . . . . . 9  |-  ( ( N  /  2 )  e.  RR  ->  ( |_ `  ( N  / 
2 ) )  <_ 
( N  /  2
) )
18631, 185syl 17 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( |_ `  ( N  /  2 ) )  <_  ( N  / 
2 ) )
18729, 186syl5eqbr 4688 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  <_  ( N  / 
2 ) )
188 lemuldiv2 10904 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 2  x.  M )  <_  N 
<->  M  <_  ( N  /  2 ) ) )
18934, 20, 17, 48, 188syl112anc 1330 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  <_  N  <->  M  <_  ( N  / 
2 ) ) )
190187, 189mpbird 247 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  <_  N )
191 ppiwordi 24888 . . . . . 6  |-  ( ( ( 2  x.  M
)  e.  RR  /\  N  e.  RR  /\  (
2  x.  M )  <_  N )  -> 
(π `  ( 2  x.  M ) )  <_ 
(π `  N ) )
19236, 20, 190, 191syl3anc 1326 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  <_ 
(π `  N ) )
19366, 139rpdivcld 11889 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  e.  RR+ )
19486, 28, 193lemul1d 11915 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  <_ 
(π `  N )  <->  ( (π `  ( 2  x.  M
) )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <_  ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) ) )
195192, 194mpbid 222 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <_  ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) )
19683, 87, 72, 184, 195ltletrd 10197 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) ) )
197 ltdiv1 10887 . . . 4  |-  ( ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR  /\  (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  <-> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 ) ) )
19883, 72, 17, 48, 197syl112anc 1330 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  <  (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <->  ( ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  / 
2 )  <  (
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 ) ) )
199196, 198mpbid 222 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 ) )
20029chebbnd1lem2 25159 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  <  ( 2  x.  ( ( log `  N
)  /  N ) ) )
201 remulcl 10021 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( ( log `  N
)  /  N )  e.  RR )  -> 
( 2  x.  (
( log `  N
)  /  N ) )  e.  RR )
2025, 81, 201sylancr 695 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  (
( log `  N
)  /  N ) )  e.  RR )
20327nngt0d 11064 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  (π `  N
) )
204 ltmul2 10874 . . . . . 6  |-  ( ( ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  e.  RR  /\  (
2  x.  ( ( log `  N )  /  N ) )  e.  RR  /\  (
(π `  N )  e.  RR  /\  0  < 
(π `  N ) ) )  ->  ( (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  <  ( 2  x.  ( ( log `  N
)  /  N ) )  <->  ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( (π `  N
)  x.  ( 2  x.  ( ( log `  N )  /  N
) ) ) ) )
20571, 202, 28, 203, 204syl112anc 1330 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  ( 2  x.  M
) )  /  (
2  x.  M ) )  <  ( 2  x.  ( ( log `  N )  /  N
) )  <->  ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( (π `  N )  x.  (
2  x.  ( ( log `  N )  /  N ) ) ) ) )
206200, 205mpbid 222 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( (π `  N )  x.  (
2  x.  ( ( log `  N )  /  N ) ) ) )
20728recnd 10068 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  N )  e.  CC )
20881recnd 10068 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  N
)  /  N )  e.  CC )
209207, 148, 208mul12d 10245 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( 2  x.  (
( log `  N
)  /  N ) ) )  =  ( 2  x.  ( (π `  N )  x.  (
( log `  N
)  /  N ) ) ) )
210206, 209breqtrd 4679 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( 2  x.  ( (π `  N
)  x.  ( ( log `  N )  /  N ) ) ) )
211 ltdivmul 10898 . . . 4  |-  ( ( ( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR  /\  ( (π `  N )  x.  ( ( log `  N
)  /  N ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  <  ( (π `  N
)  x.  ( ( log `  N )  /  N ) )  <-> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( 2  x.  ( (π `  N
)  x.  ( ( log `  N )  /  N ) ) ) ) )
21272, 82, 17, 48, 211syl112anc 1330 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  <  ( (π `  N
)  x.  ( ( log `  N )  /  N ) )  <-> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( 2  x.  ( (π `  N
)  x.  ( ( log `  N )  /  N ) ) ) ) )
213210, 212mpbird 247 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  < 
( (π `  N )  x.  ( ( log `  N
)  /  N ) ) )
21416, 74, 82, 199, 213lttrd 10198 1  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (π `  N )  x.  (
( log `  N
)  /  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   8c8 11076   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   |_cfl 12591   ^cexp 12860    _C cbc 13089   _eceu 14793   logclog 24301  πcppi 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-ppi 24826
This theorem is referenced by:  chebbnd1  25161
  Copyright terms: Public domain W3C validator