Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmclim2 Structured version   Visualization version   Unicode version

Theorem lmclim2 33554
Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
lmclim2.3  |-  ( ph  ->  F : NN --> X )
lmclim2.4  |-  J  =  ( MetOpen `  D )
lmclim2.5  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) D Y ) )
lmclim2.6  |-  ( ph  ->  Y  e.  X )
Assertion
Ref Expression
lmclim2  |-  ( ph  ->  ( F ( ~~> t `  J ) Y  <->  G  ~~>  0 ) )
Distinct variable groups:    x, D    x, F    x, G    x, J    x, X    ph, x    x, Y

Proof of Theorem lmclim2
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmclim2.4 . . 3  |-  J  =  ( MetOpen `  D )
2 lmclim2.2 . . . 4  |-  ( ph  ->  D  e.  ( Met `  X ) )
3 metxmet 22139 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
42, 3syl 17 . . 3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
5 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
6 1zzd 11408 . . 3  |-  ( ph  ->  1  e.  ZZ )
7 eqidd 2623 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
8 lmclim2.3 . . 3  |-  ( ph  ->  F : NN --> X )
91, 4, 5, 6, 7, 8lmmbrf 23060 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) Y  <->  ( Y  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) ) )
10 lmclim2.5 . . . . . 6  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) D Y ) )
11 nnex 11026 . . . . . . 7  |-  NN  e.  _V
1211mptex 6486 . . . . . 6  |-  ( x  e.  NN  |->  ( ( F `  x ) D Y ) )  e.  _V
1310, 12eqeltri 2697 . . . . 5  |-  G  e. 
_V
1413a1i 11 . . . 4  |-  ( ph  ->  G  e.  _V )
15 fveq2 6191 . . . . . . 7  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
1615oveq1d 6665 . . . . . 6  |-  ( x  =  k  ->  (
( F `  x
) D Y )  =  ( ( F `
 k ) D Y ) )
17 ovex 6678 . . . . . 6  |-  ( ( F `  k ) D Y )  e. 
_V
1816, 10, 17fvmpt 6282 . . . . 5  |-  ( k  e.  NN  ->  ( G `  k )  =  ( ( F `
 k ) D Y ) )
1918adantl 482 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( ( F `  k ) D Y ) )
202adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  D  e.  ( Met `  X
) )
218ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  X )
22 lmclim2.6 . . . . . . 7  |-  ( ph  ->  Y  e.  X )
2322adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  Y  e.  X )
24 metcl 22137 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  Y  e.  X )  ->  (
( F `  k
) D Y )  e.  RR )
2520, 21, 23, 24syl3anc 1326 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D Y )  e.  RR )
2625recnd 10068 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D Y )  e.  CC )
275, 6, 14, 19, 26clim0c 14238 . . 3  |-  ( ph  ->  ( G  ~~>  0  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
) D Y ) )  <  x ) )
28 eluznn 11758 . . . . . . . 8  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
29 metge0 22150 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  Y  e.  X )  ->  0  <_  ( ( F `  k ) D Y ) )
3020, 21, 23, 29syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( F `  k ) D Y ) )
3125, 30absidd 14161 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( F `  k ) D Y ) )  =  ( ( F `  k
) D Y ) )
3231breq1d 4663 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( ( F `  k ) D Y ) )  <  x  <->  ( ( F `  k ) D Y )  <  x
) )
3328, 32sylan2 491 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  (
( F `  k
) D Y ) )  <  x  <->  ( ( F `  k ) D Y )  <  x
) )
3433anassrs 680 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( F `
 k ) D Y ) )  < 
x  <->  ( ( F `
 k ) D Y )  <  x
) )
3534ralbidva 2985 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k ) D Y ) )  <  x  <->  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) D Y )  < 
x ) )
3635rexbidva 3049 . . . 4  |-  ( ph  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
) D Y ) )  <  x  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) )
3736ralbidv 2986 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k ) D Y ) )  <  x  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) )
3822biantrurd 529 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) D Y )  < 
x  <->  ( Y  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) ) )
3927, 37, 383bitrrd 295 . 2  |-  ( ph  ->  ( ( Y  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x )  <-> 
G  ~~>  0 ) )
409, 39bitrd 268 1  |-  ( ph  ->  ( F ( ~~> t `  J ) Y  <->  G  ~~>  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075   NNcn 11020   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974    ~~> cli 14215   *Metcxmt 19731   Metcme 19732   MetOpencmopn 19736   ~~> tclm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator