MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbrf Structured version   Visualization version   Unicode version

Theorem lmmbrf 23060
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 23057 presupposes that  F is a function. (Contributed by NM, 20-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2  |-  J  =  ( MetOpen `  D )
lmmbr.3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
lmmbr3.5  |-  Z  =  ( ZZ>= `  M )
lmmbr3.6  |-  ( ph  ->  M  e.  ZZ )
lmmbrf.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
lmmbrf.8  |-  ( ph  ->  F : Z --> X )
Assertion
Ref Expression
lmmbrf  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( A D P )  <  x ) ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    P, j, k, x   
j, X, k, x   
x, J    j, M    ph, j, k, x    j, Z, k, x
Allowed substitution hints:    A( x, j, k)    J( j, k)    M( x, k)

Proof of Theorem lmmbrf
StepHypRef Expression
1 lmmbr.3 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2 lmmbrf.8 . . . 4  |-  ( ph  ->  F : Z --> X )
3 elfvdm 6220 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
4 cnex 10017 . . . . . 6  |-  CC  e.  _V
53, 4jctir 561 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( X  e.  dom  *Met  /\  CC  e.  _V )
)
6 lmmbr3.5 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
7 uzssz 11707 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
8 zsscn 11385 . . . . . . . 8  |-  ZZ  C_  CC
97, 8sstri 3612 . . . . . . 7  |-  ( ZZ>= `  M )  C_  CC
106, 9eqsstri 3635 . . . . . 6  |-  Z  C_  CC
1110jctr 565 . . . . 5  |-  ( F : Z --> X  -> 
( F : Z --> X  /\  Z  C_  CC ) )
12 elpm2r 7875 . . . . 5  |-  ( ( ( X  e.  dom  *Met  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC )
)
135, 11, 12syl2an 494 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  F : Z --> X )  ->  F  e.  ( X  ^pm  CC ) )
141, 2, 13syl2anc 693 . . 3  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
1514biantrurd 529 . 2  |-  ( ph  ->  ( ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) ) )
166uztrn2 11705 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
1716adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  Z )
18 lmmbrf.7 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
1918oveq1d 6665 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
) D P )  =  ( A D P ) )
2019breq1d 4663 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( F `  k ) D P )  <  x  <->  ( A D P )  <  x
) )
2120adantrl 752 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( ( ( F `
 k ) D P )  <  x  <->  ( A D P )  <  x ) )
22 fdm 6051 . . . . . . . . . . . . . . . 16  |-  ( F : Z --> X  ->  dom  F  =  Z )
232, 22syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  F  =  Z )
2423eleq2d 2687 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  dom  F  <-> 
k  e.  Z ) )
2524biimpar 502 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  dom  F )
262ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  X )
2725, 26jca 554 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  e.  dom  F  /\  ( F `  k
)  e.  X ) )
2827biantrurd 529 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( F `  k ) D P )  <  x  <->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  ( ( F `
 k ) D P )  <  x
) ) )
29 df-3an 1039 . . . . . . . . . . 11  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x )  <-> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (
( F `  k
) D P )  <  x ) )
3028, 29syl6bbr 278 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( F `  k ) D P )  <  x  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3130adantrl 752 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( ( ( F `
 k ) D P )  <  x  <->  ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3221, 31bitr3d 270 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  Z ) )  -> 
( ( A D P )  <  x  <->  ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3332anassrs 680 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  Z )  ->  (
( A D P )  <  x  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3417, 33syldan 487 . . . . . 6  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( A D P )  < 
x  <->  ( k  e. 
dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3534ralbidva 2985 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( A D P )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3635rexbidva 3049 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( A D P )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3736ralbidv 2986 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( A D P )  <  x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3837anbi2d 740 . 2  |-  ( ph  ->  ( ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( A D P )  <  x )  <-> 
( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
39 lmmbr.2 . . . 4  |-  J  =  ( MetOpen `  D )
40 lmmbr3.6 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4139, 1, 6, 40lmmbr3 23058 . . 3  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
42 3anass 1042 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
4341, 42syl6bb 276 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) ) )
4415, 38, 433bitr4rd 301 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( A D P )  <  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934    < clt 10074   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   *Metcxmt 19731   MetOpencmopn 19736   ~~> tclm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033
This theorem is referenced by:  lmnn  23061  h2hlm  27837  lmclim2  33554  heibor1lem  33608  rrncmslem  33631
  Copyright terms: Public domain W3C validator