MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscn2 Structured version   Visualization version   Unicode version

Theorem metdscn2 22660
Description: The function  F which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
metdscn.j  |-  J  =  ( MetOpen `  D )
metdscn2.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
metdscn2  |-  ( ( D  e.  ( Met `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  F  e.  ( J  Cn  K
) )
Distinct variable groups:    x, y, D    y, J    x, S, y    x, X, y
Allowed substitution hints:    F( x, y)    J( x)    K( x, y)

Proof of Theorem metdscn2
StepHypRef Expression
1 eqid 2622 . . . . . . 7  |-  ( dist `  RR*s )  =  ( dist `  RR*s
)
21xrsdsre 22613 . . . . . 6  |-  ( (
dist `  RR*s )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
31xrsxmet 22612 . . . . . . 7  |-  ( dist `  RR*s )  e.  ( *Met `  RR* )
4 ressxr 10083 . . . . . . 7  |-  RR  C_  RR*
5 eqid 2622 . . . . . . . 8  |-  ( (
dist `  RR*s )  |`  ( RR  X.  RR ) )  =  ( ( dist `  RR*s
)  |`  ( RR  X.  RR ) )
6 eqid 2622 . . . . . . . 8  |-  ( MetOpen `  ( dist `  RR*s ) )  =  ( MetOpen `  ( dist `  RR*s ) )
7 eqid 2622 . . . . . . . 8  |-  ( MetOpen `  ( ( dist `  RR*s
)  |`  ( RR  X.  RR ) ) )  =  ( MetOpen `  ( ( dist `  RR*s )  |`  ( RR  X.  RR ) ) )
85, 6, 7metrest 22329 . . . . . . 7  |-  ( ( ( dist `  RR*s
)  e.  ( *Met `  RR* )  /\  RR  C_  RR* )  -> 
( ( MetOpen `  ( dist `  RR*s ) )t  RR )  =  ( MetOpen `  ( ( dist `  RR*s
)  |`  ( RR  X.  RR ) ) ) )
93, 4, 8mp2an 708 . . . . . 6  |-  ( (
MetOpen `  ( dist `  RR*s
) )t  RR )  =  (
MetOpen `  ( ( dist `  RR*s )  |`  ( RR  X.  RR ) ) )
102, 9tgioo 22599 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  ( ( MetOpen `  ( dist ` 
RR*s ) )t  RR )
11 metdscn2.k . . . . . 6  |-  K  =  ( TopOpen ` fld )
1211tgioo2 22606 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  ( Kt  RR )
1310, 12eqtr3i 2646 . . . 4  |-  ( (
MetOpen `  ( dist `  RR*s
) )t  RR )  =  ( Kt  RR )
1413oveq2i 6661 . . 3  |-  ( J  Cn  ( ( MetOpen `  ( dist `  RR*s ) )t  RR ) )  =  ( J  Cn  ( Kt  RR ) )
1511cnfldtop 22587 . . . 4  |-  K  e. 
Top
16 cnrest2r 21091 . . . 4  |-  ( K  e.  Top  ->  ( J  Cn  ( Kt  RR ) )  C_  ( J  Cn  K ) )
1715, 16ax-mp 5 . . 3  |-  ( J  Cn  ( Kt  RR ) )  C_  ( J  Cn  K )
1814, 17eqsstri 3635 . 2  |-  ( J  Cn  ( ( MetOpen `  ( dist `  RR*s ) )t  RR ) )  C_  ( J  Cn  K
)
19 metxmet 22139 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
20 metdscn.f . . . . . 6  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
21 metdscn.j . . . . . 6  |-  J  =  ( MetOpen `  D )
2220, 21, 1, 6metdscn 22659 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F  e.  ( J  Cn  ( MetOpen
`  ( dist `  RR*s
) ) ) )
2319, 22sylan 488 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  S  C_  X )  ->  F  e.  ( J  Cn  ( MetOpen
`  ( dist `  RR*s
) ) ) )
24233adant3 1081 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  F  e.  ( J  Cn  ( MetOpen
`  ( dist `  RR*s
) ) ) )
2520metdsre 22656 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  F : X
--> RR )
26 frn 6053 . . . 4  |-  ( F : X --> RR  ->  ran 
F  C_  RR )
276mopntopon 22244 . . . . . 6  |-  ( (
dist `  RR*s )  e.  ( *Met ` 
RR* )  ->  ( MetOpen
`  ( dist `  RR*s
) )  e.  (TopOn `  RR* ) )
283, 27ax-mp 5 . . . . 5  |-  ( MetOpen `  ( dist `  RR*s ) )  e.  (TopOn `  RR* )
29 cnrest2 21090 . . . . 5  |-  ( ( ( MetOpen `  ( dist ` 
RR*s ) )  e.  (TopOn `  RR* )  /\  ran  F  C_  RR  /\  RR  C_  RR* )  -> 
( F  e.  ( J  Cn  ( MetOpen `  ( dist `  RR*s ) ) )  <->  F  e.  ( J  Cn  (
( MetOpen `  ( dist ` 
RR*s ) )t  RR ) ) ) )
3028, 4, 29mp3an13 1415 . . . 4  |-  ( ran 
F  C_  RR  ->  ( F  e.  ( J  Cn  ( MetOpen `  ( dist `  RR*s ) ) )  <->  F  e.  ( J  Cn  ( ( MetOpen `  ( dist `  RR*s ) )t  RR ) ) ) )
3125, 26, 303syl 18 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( F  e.  ( J  Cn  ( MetOpen `  ( dist ` 
RR*s ) ) )  <->  F  e.  ( J  Cn  ( ( MetOpen `  ( dist `  RR*s ) )t  RR ) ) ) )
3224, 31mpbid 222 . 2  |-  ( ( D  e.  ( Met `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  F  e.  ( J  Cn  (
( MetOpen `  ( dist ` 
RR*s ) )t  RR ) ) )
3318, 32sseldi 3601 1  |-  ( ( D  e.  ( Met `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  F  e.  ( J  Cn  K
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915    |-> cmpt 4729    X. cxp 5112   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   RR*cxr 10073    < clt 10074   (,)cioo 12175   distcds 15950   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098   RR*scxrs 16160   *Metcxmt 19731   Metcme 19732   MetOpencmopn 19736  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-xrs 16162  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-xms 22125  df-ms 22126
This theorem is referenced by:  lebnumlem2  22761
  Copyright terms: Public domain W3C validator