MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem3 Structured version   Visualization version   Unicode version

Theorem metnrmlem3 22664
Description: Lemma for metnrm 22665. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
metdscn.j  |-  J  =  ( MetOpen `  D )
metnrmlem.1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
metnrmlem.2  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
metnrmlem.3  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
metnrmlem.4  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
metnrmlem.u  |-  U  = 
U_ t  e.  T  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )
metnrmlem.g  |-  G  =  ( x  e.  X  |-> inf ( ran  ( y  e.  T  |->  ( x D y ) ) ,  RR* ,  <  )
)
metnrmlem.v  |-  V  = 
U_ s  e.  S  ( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )
Assertion
Ref Expression
metnrmlem3  |-  ( ph  ->  E. z  e.  J  E. w  e.  J  ( S  C_  z  /\  T  C_  w  /\  (
z  i^i  w )  =  (/) ) )
Distinct variable groups:    x, w, y, z    t, s, w, x, y, z, D    J, s, t, w, y, z    ph, s, t    G, s, t    T, s, t, w, x, y, z    S, s, t, w, x, y, z    U, s, w    X, s, t, w, x, y, z    F, s, t, w, z    w, V, z
Allowed substitution hints:    ph( x, y, z, w)    U( x, y, z, t)    F( x, y)    G( x, y, z, w)    J( x)    V( x, y, t, s)

Proof of Theorem metnrmlem3
StepHypRef Expression
1 metnrmlem.g . . . 4  |-  G  =  ( x  e.  X  |-> inf ( ran  ( y  e.  T  |->  ( x D y ) ) ,  RR* ,  <  )
)
2 metdscn.j . . . 4  |-  J  =  ( MetOpen `  D )
3 metnrmlem.1 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
4 metnrmlem.3 . . . 4  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
5 metnrmlem.2 . . . 4  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
6 incom 3805 . . . . 5  |-  ( T  i^i  S )  =  ( S  i^i  T
)
7 metnrmlem.4 . . . . 5  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
86, 7syl5eq 2668 . . . 4  |-  ( ph  ->  ( T  i^i  S
)  =  (/) )
9 metnrmlem.v . . . 4  |-  V  = 
U_ s  e.  S  ( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )
101, 2, 3, 4, 5, 8, 9metnrmlem2 22663 . . 3  |-  ( ph  ->  ( V  e.  J  /\  S  C_  V ) )
1110simpld 475 . 2  |-  ( ph  ->  V  e.  J )
12 metdscn.f . . . 4  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
13 metnrmlem.u . . . 4  |-  U  = 
U_ t  e.  T  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )
1412, 2, 3, 5, 4, 7, 13metnrmlem2 22663 . . 3  |-  ( ph  ->  ( U  e.  J  /\  T  C_  U ) )
1514simpld 475 . 2  |-  ( ph  ->  U  e.  J )
1610simprd 479 . 2  |-  ( ph  ->  S  C_  V )
1714simprd 479 . 2  |-  ( ph  ->  T  C_  U )
189ineq1i 3810 . . . 4  |-  ( V  i^i  U )  =  ( U_ s  e.  S  ( s (
ball `  D )
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i 
U )
19 iunin1 4585 . . . 4  |-  U_ s  e.  S  ( (
s ( ball `  D
) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i 
U )  =  (
U_ s  e.  S  ( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )  i^i  U )
2018, 19eqtr4i 2647 . . 3  |-  ( V  i^i  U )  = 
U_ s  e.  S  ( ( s (
ball `  D )
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i 
U )
2113ineq2i 3811 . . . . . . . 8  |-  ( ( s ( ball `  D
) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i 
U )  =  ( ( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )  i^i  U_ t  e.  T  ( t
( ball `  D )
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
22 iunin2 4584 . . . . . . . 8  |-  U_ t  e.  T  ( (
s ( ball `  D
) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )  =  ( ( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )  i^i  U_ t  e.  T  ( t
( ball `  D )
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
2321, 22eqtr4i 2647 . . . . . . 7  |-  ( ( s ( ball `  D
) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i 
U )  =  U_ t  e.  T  (
( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )  i^i  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )
243adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  D  e.  ( *Met `  X ) )
25 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  U. J  =  U. J
2625cldss 20833 . . . . . . . . . . . . . . . 16  |-  ( S  e.  ( Clsd `  J
)  ->  S  C_  U. J
)
275, 26syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  C_  U. J )
282mopnuni 22246 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
293, 28syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  =  U. J
)
3027, 29sseqtr4d 3642 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  C_  X )
3130sselda 3603 . . . . . . . . . . . . 13  |-  ( (
ph  /\  s  e.  S )  ->  s  e.  X )
3231adantrr 753 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
s  e.  X )
3325cldss 20833 . . . . . . . . . . . . . . . 16  |-  ( T  e.  ( Clsd `  J
)  ->  T  C_  U. J
)
344, 33syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  T  C_  U. J )
3534, 29sseqtr4d 3642 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  C_  X )
3635sselda 3603 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  X )
3736adantrl 752 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
t  e.  X )
381, 2, 3, 4, 5, 8metnrmlem1a 22661 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  S )  ->  (
0  <  ( G `  s )  /\  if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  e.  RR+ )
)
3938simprd 479 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  S )  ->  if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  e.  RR+ )
4039adantrr 753 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  e.  RR+ )
4140rphalfcld 11884 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 )  e.  RR+ )
4241rpxrd 11873 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 )  e.  RR* )
4312, 2, 3, 5, 4, 7metnrmlem1a 22661 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  t  e.  T )  ->  (
0  <  ( F `  t )  /\  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  e.  RR+ )
)
4443adantrl 752 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( 0  <  ( F `  t )  /\  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) )  e.  RR+ ) )
4544simprd 479 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  e.  RR+ )
4645rphalfcld 11884 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 )  e.  RR+ )
4746rpxrd 11873 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 )  e.  RR* )
4840rpred 11872 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  e.  RR )
4948rehalfcld 11279 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 )  e.  RR )
5045rpred 11872 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  e.  RR )
5150rehalfcld 11279 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 )  e.  RR )
52 rexadd 12063 . . . . . . . . . . . . . . 15  |-  ( ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 )  e.  RR  /\  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 )  e.  RR )  ->  ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) +e ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) )  =  ( ( if ( 1  <_ 
( G `  s
) ,  1 ,  ( G `  s
) )  /  2
)  +  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )
5349, 51, 52syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) +e
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  =  ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 )  +  ( if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) )  /  2
) ) )
5448recnd 10068 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  e.  CC )
5550recnd 10068 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  e.  CC )
56 2cnd 11093 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
2  e.  CC )
57 2ne0 11113 . . . . . . . . . . . . . . . 16  |-  2  =/=  0
5857a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
2  =/=  0 )
5954, 55, 56, 58divdird 10839 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 )  =  ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 )  +  ( if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) )  /  2
) ) )
6053, 59eqtr4d 2659 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) +e
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  =  ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 ) )
611, 2, 3, 4, 5, 8metnrmlem1 22662 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( t  e.  T  /\  s  e.  S ) )  ->  if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  <_  ( t D s ) )
6261ancom2s 844 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  <_  ( t D s ) )
63 xmetsym 22152 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  ( *Met `  X )  /\  t  e.  X  /\  s  e.  X
)  ->  ( t D s )  =  ( s D t ) )
6424, 37, 32, 63syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( t D s )  =  ( s D t ) )
6562, 64breqtrd 4679 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  <_  ( s D t ) )
6612, 2, 3, 5, 4, 7metnrmlem1 22662 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  <_  ( s D t ) )
6740rpxrd 11873 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  e.  RR* )
6845rpxrd 11873 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  ->  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  e.  RR* )
69 xmetcl 22136 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  ( *Met `  X )  /\  s  e.  X  /\  t  e.  X
)  ->  ( s D t )  e. 
RR* )
7024, 32, 37, 69syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( s D t )  e.  RR* )
71 xle2add 12089 . . . . . . . . . . . . . . . . 17  |-  ( ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  e. 
RR*  /\  if (
1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  e. 
RR* )  /\  (
( s D t )  e.  RR*  /\  (
s D t )  e.  RR* ) )  -> 
( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  <_ 
( s D t )  /\  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  <_ 
( s D t ) )  ->  ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) ) +e if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) ) )  <_  (
( s D t ) +e ( s D t ) ) ) )
7267, 68, 70, 70, 71syl22anc 1327 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  <_ 
( s D t )  /\  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  <_ 
( s D t ) )  ->  ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) ) +e if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) ) )  <_  (
( s D t ) +e ( s D t ) ) ) )
7365, 66, 72mp2and 715 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) ) +e if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) ) )  <_  ( ( s D t ) +e ( s D t ) ) )
7448, 50readdcld 10069 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  e.  RR )
7574recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  e.  CC )
7675, 56, 58divcan2d 10803 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( 2  x.  (
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 ) )  =  ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) ) )
77 2re 11090 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
7874rehalfcld 11279 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 )  e.  RR )
79 rexmul 12101 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  RR  /\  ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 )  e.  RR )  ->  ( 2 xe ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) ) )  /  2 ) )  =  ( 2  x.  ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 ) ) )
8077, 78, 79sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( 2 xe ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 ) )  =  ( 2  x.  (
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 ) ) )
81 rexadd 12063 . . . . . . . . . . . . . . . . 17  |-  ( ( if ( 1  <_ 
( G `  s
) ,  1 ,  ( G `  s
) )  e.  RR  /\  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) )  e.  RR )  ->  ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) ) +e if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) ) )  =  ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) ) )
8248, 50, 81syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) ) +e if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) ) )  =  ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) ) )
8376, 80, 823eqtr4d 2666 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( 2 xe ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 ) )  =  ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) ) +e if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) ) ) )
84 x2times 12129 . . . . . . . . . . . . . . . 16  |-  ( ( s D t )  e.  RR*  ->  ( 2 xe ( s D t ) )  =  ( ( s D t ) +e ( s D t ) ) )
8570, 84syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( 2 xe ( s D t ) )  =  ( ( s D t ) +e ( s D t ) ) )
8673, 83, 853brtr4d 4685 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( 2 xe ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 ) )  <_ 
( 2 xe ( s D t ) ) )
8778rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 )  e.  RR* )
88 2rp 11837 . . . . . . . . . . . . . . . 16  |-  2  e.  RR+
8988a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
2  e.  RR+ )
90 xlemul2 12121 . . . . . . . . . . . . . . 15  |-  ( ( ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 )  e.  RR*  /\  ( s D t )  e.  RR*  /\  2  e.  RR+ )  ->  (
( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 )  <_  (
s D t )  <-> 
( 2 xe ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 ) )  <_ 
( 2 xe ( s D t ) ) ) )
9187, 70, 89, 90syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) ) )  /  2 )  <_ 
( s D t )  <->  ( 2 xe ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) ) )  /  2 ) )  <_  ( 2 xe ( s D t ) ) ) )
9286, 91mpbird 247 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  +  if ( 1  <_ 
( F `  t
) ,  1 ,  ( F `  t
) ) )  / 
2 )  <_  (
s D t ) )
9360, 92eqbrtrd 4675 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) +e
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  <_ 
( s D t ) )
94 bldisj 22203 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  s  e.  X  /\  t  e.  X
)  /\  ( ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 )  e.  RR*  /\  ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 )  e.  RR*  /\  (
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) +e
( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) )  <_ 
( s D t ) ) )  -> 
( ( s (
ball `  D )
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )  =  (/) )
9524, 32, 37, 42, 47, 93, 94syl33anc 1341 . . . . . . . . . . 11  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( s (
ball `  D )
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )  =  (/) )
96 eqimss 3657 . . . . . . . . . . 11  |-  ( ( ( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )  i^i  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) )  =  (/)  ->  ( ( s ( ball `  D
) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )  C_  (/) )
9795, 96syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( s  e.  S  /\  t  e.  T ) )  -> 
( ( s (
ball `  D )
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )  C_  (/) )
9897anassrs 680 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  S )  /\  t  e.  T )  ->  (
( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )  i^i  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) ) 
C_  (/) )
9998ralrimiva 2966 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S )  ->  A. t  e.  T  ( (
s ( ball `  D
) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )  C_  (/) )
100 iunss 4561 . . . . . . . 8  |-  ( U_ t  e.  T  (
( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )  i^i  ( t ( ball `  D
) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  / 
2 ) ) ) 
C_  (/)  <->  A. t  e.  T  ( ( s (
ball `  D )
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )  C_  (/) )
10199, 100sylibr 224 . . . . . . 7  |-  ( (
ph  /\  s  e.  S )  ->  U_ t  e.  T  ( (
s ( ball `  D
) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i  ( t ( ball `  D ) ( if ( 1  <_  ( F `  t ) ,  1 ,  ( F `  t ) )  /  2 ) ) )  C_  (/) )
10223, 101syl5eqss 3649 . . . . . 6  |-  ( (
ph  /\  s  e.  S )  ->  (
( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )  i^i  U ) 
C_  (/) )
103102ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. s  e.  S  ( ( s (
ball `  D )
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i 
U )  C_  (/) )
104 iunss 4561 . . . . 5  |-  ( U_ s  e.  S  (
( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )  i^i  U ) 
C_  (/)  <->  A. s  e.  S  ( ( s (
ball `  D )
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i 
U )  C_  (/) )
105103, 104sylibr 224 . . . 4  |-  ( ph  ->  U_ s  e.  S  ( ( s (
ball `  D )
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i 
U )  C_  (/) )
106 ss0 3974 . . . 4  |-  ( U_ s  e.  S  (
( s ( ball `  D ) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  /  2 ) )  i^i  U ) 
C_  (/)  ->  U_ s  e.  S  ( ( s ( ball `  D
) ( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i 
U )  =  (/) )
107105, 106syl 17 . . 3  |-  ( ph  ->  U_ s  e.  S  ( ( s (
ball `  D )
( if ( 1  <_  ( G `  s ) ,  1 ,  ( G `  s ) )  / 
2 ) )  i^i 
U )  =  (/) )
10820, 107syl5eq 2668 . 2  |-  ( ph  ->  ( V  i^i  U
)  =  (/) )
109 sseq2 3627 . . . 4  |-  ( z  =  V  ->  ( S  C_  z  <->  S  C_  V
) )
110 ineq1 3807 . . . . 5  |-  ( z  =  V  ->  (
z  i^i  w )  =  ( V  i^i  w ) )
111110eqeq1d 2624 . . . 4  |-  ( z  =  V  ->  (
( z  i^i  w
)  =  (/)  <->  ( V  i^i  w )  =  (/) ) )
112109, 1113anbi13d 1401 . . 3  |-  ( z  =  V  ->  (
( S  C_  z  /\  T  C_  w  /\  ( z  i^i  w
)  =  (/) )  <->  ( S  C_  V  /\  T  C_  w  /\  ( V  i^i  w )  =  (/) ) ) )
113 sseq2 3627 . . . 4  |-  ( w  =  U  ->  ( T  C_  w  <->  T  C_  U
) )
114 ineq2 3808 . . . . 5  |-  ( w  =  U  ->  ( V  i^i  w )  =  ( V  i^i  U
) )
115114eqeq1d 2624 . . . 4  |-  ( w  =  U  ->  (
( V  i^i  w
)  =  (/)  <->  ( V  i^i  U )  =  (/) ) )
116113, 1153anbi23d 1402 . . 3  |-  ( w  =  U  ->  (
( S  C_  V  /\  T  C_  w  /\  ( V  i^i  w
)  =  (/) )  <->  ( S  C_  V  /\  T  C_  U  /\  ( V  i^i  U )  =  (/) ) ) )
117112, 116rspc2ev 3324 . 2  |-  ( ( V  e.  J  /\  U  e.  J  /\  ( S  C_  V  /\  T  C_  U  /\  ( V  i^i  U )  =  (/) ) )  ->  E. z  e.  J  E. w  e.  J  ( S  C_  z  /\  T  C_  w  /\  ( z  i^i  w )  =  (/) ) )
11811, 15, 16, 17, 108, 117syl113anc 1338 1  |-  ( ph  ->  E. z  e.  J  E. w  e.  J  ( S  C_  z  /\  T  C_  w  /\  (
z  i^i  w )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   2c2 11070   RR+crp 11832   +ecxad 11944   xecxmu 11945   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736   Clsdccld 20820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by:  metnrm  22665
  Copyright terms: Public domain W3C validator