MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modsubdir Structured version   Visualization version   Unicode version

Theorem modsubdir 12739
Description: Distribute the modulo operation over a subtraction. (Contributed by NM, 30-Dec-2008.)
Assertion
Ref Expression
modsubdir  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( B  mod  C
)  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C
)  -  ( B  mod  C ) ) ) )

Proof of Theorem modsubdir
StepHypRef Expression
1 modcl 12672 . . . 4  |-  ( ( A  e.  RR  /\  C  e.  RR+ )  -> 
( A  mod  C
)  e.  RR )
213adant2 1080 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  mod  C )  e.  RR )
3 modcl 12672 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( B  mod  C
)  e.  RR )
433adant1 1079 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( B  mod  C )  e.  RR )
52, 4subge0d 10617 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
0  <_  ( ( A  mod  C )  -  ( B  mod  C ) )  <->  ( B  mod  C )  <_  ( A  mod  C ) ) )
6 resubcl 10345 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
763adant3 1081 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  -  B )  e.  RR )
8 simp3 1063 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  C  e.  RR+ )
9 rerpdivcl 11861 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  e.  RR+ )  -> 
( A  /  C
)  e.  RR )
109flcld 12599 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  e.  RR+ )  -> 
( |_ `  ( A  /  C ) )  e.  ZZ )
11103adant2 1080 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( |_ `  ( A  /  C ) )  e.  ZZ )
12 rerpdivcl 11861 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( B  /  C
)  e.  RR )
1312flcld 12599 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( |_ `  ( B  /  C ) )  e.  ZZ )
14133adant1 1079 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( |_ `  ( B  /  C ) )  e.  ZZ )
1511, 14zsubcld 11487 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) )  e.  ZZ )
16 modcyc2 12706 . . . . . . 7  |-  ( ( ( A  -  B
)  e.  RR  /\  C  e.  RR+  /\  (
( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C
) ) )  e.  ZZ )  ->  (
( ( A  -  B )  -  ( C  x.  ( ( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  mod 
C )  =  ( ( A  -  B
)  mod  C )
)
177, 8, 15, 16syl3anc 1326 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( ( A  -  B )  -  ( C  x.  ( ( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  mod 
C )  =  ( ( A  -  B
)  mod  C )
)
18 recn 10026 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
19183ad2ant1 1082 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  A  e.  CC )
20 recn 10026 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  e.  CC )
21203ad2ant2 1083 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  B  e.  CC )
22 rpre 11839 . . . . . . . . . . . . 13  |-  ( C  e.  RR+  ->  C  e.  RR )
2322adantl 482 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  C  e.  RR+ )  ->  C  e.  RR )
24 refldivcl 12624 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  C  e.  RR+ )  -> 
( |_ `  ( A  /  C ) )  e.  RR )
2523, 24remulcld 10070 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  C  e.  RR+ )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  RR )
2625recnd 10068 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  e.  RR+ )  -> 
( C  x.  ( |_ `  ( A  /  C ) ) )  e.  CC )
27263adant2 1080 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( C  x.  ( |_ `  ( A  /  C
) ) )  e.  CC )
2822adantl 482 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  ->  C  e.  RR )
29 refldivcl 12624 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( |_ `  ( B  /  C ) )  e.  RR )
3028, 29remulcld 10070 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  RR )
3130recnd 10068 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( C  x.  ( |_ `  ( B  /  C ) ) )  e.  CC )
32313adant1 1079 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( C  x.  ( |_ `  ( B  /  C
) ) )  e.  CC )
3319, 21, 27, 32sub4d 10441 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( A  -  B
)  -  ( ( C  x.  ( |_
`  ( A  /  C ) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) )  -  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
34223ad2ant3 1084 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  C  e.  RR )
3534recnd 10068 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  C  e.  CC )
3624recnd 10068 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  C  e.  RR+ )  -> 
( |_ `  ( A  /  C ) )  e.  CC )
37363adant2 1080 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( |_ `  ( A  /  C ) )  e.  CC )
3829recnd 10068 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( |_ `  ( B  /  C ) )  e.  CC )
39383adant1 1079 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( |_ `  ( B  /  C ) )  e.  CC )
4035, 37, 39subdid 10486 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( C  x.  ( ( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) )  =  ( ( C  x.  ( |_ `  ( A  /  C ) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )
4140oveq2d 6666 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( A  -  B
)  -  ( C  x.  ( ( |_
`  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  -  B )  -  (
( C  x.  ( |_ `  ( A  /  C ) ) )  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
42 modval 12670 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  e.  RR+ )  -> 
( A  mod  C
)  =  ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) ) )
43423adant2 1080 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  mod  C )  =  ( A  -  ( C  x.  ( |_ `  ( A  /  C
) ) ) ) )
44 modval 12670 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
( B  mod  C
)  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) )
45443adant1 1079 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( B  mod  C )  =  ( B  -  ( C  x.  ( |_ `  ( B  /  C
) ) ) ) )
4643, 45oveq12d 6668 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  =  ( ( A  -  ( C  x.  ( |_ `  ( A  /  C ) ) ) )  -  ( B  -  ( C  x.  ( |_ `  ( B  /  C ) ) ) ) ) )
4733, 41, 463eqtr4d 2666 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( A  -  B
)  -  ( C  x.  ( ( |_
`  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
4847oveq1d 6665 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( ( A  -  B )  -  ( C  x.  ( ( |_ `  ( A  /  C ) )  -  ( |_ `  ( B  /  C ) ) ) ) )  mod 
C )  =  ( ( ( A  mod  C )  -  ( B  mod  C ) )  mod  C ) )
4917, 48eqtr3d 2658 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( A  -  B
)  mod  C )  =  ( ( ( A  mod  C )  -  ( B  mod  C ) )  mod  C
) )
5049adantr 481 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  -  B
)  mod  C )  =  ( ( ( A  mod  C )  -  ( B  mod  C ) )  mod  C
) )
512, 4resubcld 10458 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  e.  RR )
5251adantr 481 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  e.  RR )
53 simpl3 1066 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  C  e.  RR+ )
54 simpr 477 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )
55 modge0 12678 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR+ )  -> 
0  <_  ( B  mod  C ) )
56553adant1 1079 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  0  <_  ( B  mod  C
) )
572, 4subge02d 10619 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
0  <_  ( B  mod  C )  <->  ( ( A  mod  C )  -  ( B  mod  C ) )  <_  ( A  mod  C ) ) )
5856, 57mpbid 222 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  <_  ( A  mod  C ) )
59 modlt 12679 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR+ )  -> 
( A  mod  C
)  <  C )
60593adant2 1080 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  ( A  mod  C )  < 
C )
6151, 2, 34, 58, 60lelttrd 10195 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  <  C )
6261adantr 481 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  mod  C
)  -  ( B  mod  C ) )  <  C )
63 modid 12695 . . . . 5  |-  ( ( ( ( ( A  mod  C )  -  ( B  mod  C ) )  e.  RR  /\  C  e.  RR+ )  /\  ( 0  <_  (
( A  mod  C
)  -  ( B  mod  C ) )  /\  ( ( A  mod  C )  -  ( B  mod  C ) )  <  C ) )  ->  ( (
( A  mod  C
)  -  ( B  mod  C ) )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
6452, 53, 54, 62, 63syl22anc 1327 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( ( A  mod  C )  -  ( B  mod  C ) )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
6550, 64eqtrd 2656 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  /\  0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )  ->  (
( A  -  B
)  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
66 modge0 12678 . . . . . 6  |-  ( ( ( A  -  B
)  e.  RR  /\  C  e.  RR+ )  -> 
0  <_  ( ( A  -  B )  mod  C ) )
676, 66stoic3 1701 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  0  <_  ( ( A  -  B )  mod  C
) )
6867adantr 481 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
0  <_  ( ( A  -  B )  mod  C ) )
69 simpr 477 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7068, 69breqtrd 4679 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  /\  ( ( A  -  B )  mod  C
)  =  ( ( A  mod  C )  -  ( B  mod  C ) ) )  -> 
0  <_  ( ( A  mod  C )  -  ( B  mod  C ) ) )
7165, 70impbida 877 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
0  <_  ( ( A  mod  C )  -  ( B  mod  C ) )  <->  ( ( A  -  B )  mod 
C )  =  ( ( A  mod  C
)  -  ( B  mod  C ) ) ) )
725, 71bitr3d 270 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR+ )  ->  (
( B  mod  C
)  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C
)  -  ( B  mod  C ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   ZZcz 11377   RR+crp 11832   |_cfl 12591    mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669
This theorem is referenced by:  modeqmodmin  12740  digit1  12998  4sqlem12  15660
  Copyright terms: Public domain W3C validator