Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval2lem Structured version   Visualization version   Unicode version

Theorem ovolval2lem 40857
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ovolval2lem.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
Assertion
Ref Expression
ovolval2lem  |-  ( ph  ->  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  F ) )  =  ran  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) ( vol `  (
( [,)  o.  F
) `  k )
) ) )
Distinct variable groups:    k, F, n    ph, k
Allowed substitution hint:    ph( n)

Proof of Theorem ovolval2lem
StepHypRef Expression
1 reex 10027 . . . . . . 7  |-  RR  e.  _V
21, 1xpex 6962 . . . . . 6  |-  ( RR 
X.  RR )  e. 
_V
3 inss2 3834 . . . . . 6  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
4 mapss 7900 . . . . . 6  |-  ( ( ( RR  X.  RR )  e.  _V  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR ) )  ->  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  C_  ( ( RR 
X.  RR )  ^m  NN ) )
52, 3, 4mp2an 708 . . . . 5  |-  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  C_  ( ( RR  X.  RR )  ^m  NN )
6 ovolval2lem.1 . . . . . 6  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
72inex2 4800 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
87a1i 11 . . . . . . 7  |-  ( ph  ->  (  <_  i^i  ( RR  X.  RR ) )  e.  _V )
9 nnex 11026 . . . . . . . 8  |-  NN  e.  _V
109a1i 11 . . . . . . 7  |-  ( ph  ->  NN  e.  _V )
118, 10elmapd 7871 . . . . . 6  |-  ( ph  ->  ( F  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  <->  F : NN
--> (  <_  i^i  ( RR  X.  RR ) ) ) )
126, 11mpbird 247 . . . . 5  |-  ( ph  ->  F  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
135, 12sseldi 3601 . . . 4  |-  ( ph  ->  F  e.  ( ( RR  X.  RR )  ^m  NN ) )
14 1zzd 11408 . . . . 5  |-  ( F  e.  ( ( RR 
X.  RR )  ^m  NN )  ->  1  e.  ZZ )
15 nnuz 11723 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
16 elmapi 7879 . . . . . . . . . 10  |-  ( F  e.  ( ( RR 
X.  RR )  ^m  NN )  ->  F : NN
--> ( RR  X.  RR ) )
1716adantr 481 . . . . . . . . 9  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  F : NN --> ( RR 
X.  RR ) )
18 simpr 477 . . . . . . . . 9  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  k  e.  NN )
1917, 18fvovco 39381 . . . . . . . 8  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( ( [,)  o.  F ) `  k
)  =  ( ( 1st `  ( F `
 k ) ) [,) ( 2nd `  ( F `  k )
) ) )
2019fveq2d 6195 . . . . . . 7  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( vol `  (
( [,)  o.  F
) `  k )
)  =  ( vol `  ( ( 1st `  ( F `  k )
) [,) ( 2nd `  ( F `  k
) ) ) ) )
2116ffvelrnda 6359 . . . . . . . . 9  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( F `  k
)  e.  ( RR 
X.  RR ) )
22 xp1st 7198 . . . . . . . . 9  |-  ( ( F `  k )  e.  ( RR  X.  RR )  ->  ( 1st `  ( F `  k
) )  e.  RR )
2321, 22syl 17 . . . . . . . 8  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( 1st `  ( F `  k )
)  e.  RR )
24 xp2nd 7199 . . . . . . . . 9  |-  ( ( F `  k )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( F `  k
) )  e.  RR )
2521, 24syl 17 . . . . . . . 8  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( 2nd `  ( F `  k )
)  e.  RR )
26 volicore 40795 . . . . . . . 8  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR )  -> 
( vol `  (
( 1st `  ( F `  k )
) [,) ( 2nd `  ( F `  k
) ) ) )  e.  RR )
2723, 25, 26syl2anc 693 . . . . . . 7  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( vol `  (
( 1st `  ( F `  k )
) [,) ( 2nd `  ( F `  k
) ) ) )  e.  RR )
2820, 27eqeltrd 2701 . . . . . 6  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( vol `  (
( [,)  o.  F
) `  k )
)  e.  RR )
2928recnd 10068 . . . . 5  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( vol `  (
( [,)  o.  F
) `  k )
)  e.  CC )
30 eqid 2622 . . . . 5  |-  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n
) ( vol `  (
( [,)  o.  F
) `  k )
) )  =  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) ( vol `  ( ( [,)  o.  F ) `
 k ) ) )
31 eqid 2622 . . . . 5  |-  seq 1
(  +  ,  ( k  e.  NN  |->  ( vol `  ( ( [,)  o.  F ) `
 k ) ) ) )  =  seq 1 (  +  , 
( k  e.  NN  |->  ( vol `  ( ( [,)  o.  F ) `
 k ) ) ) )
3214, 15, 29, 30, 31fsumsermpt 39811 . . . 4  |-  ( F  e.  ( ( RR 
X.  RR )  ^m  NN )  ->  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n
) ( vol `  (
( [,)  o.  F
) `  k )
) )  =  seq 1 (  +  , 
( k  e.  NN  |->  ( vol `  ( ( [,)  o.  F ) `
 k ) ) ) ) )
3313, 32syl 17 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) ( vol `  ( ( [,)  o.  F ) `
 k ) ) )  =  seq 1
(  +  ,  ( k  e.  NN  |->  ( vol `  ( ( [,)  o.  F ) `
 k ) ) ) ) )
34 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( 1st `  ( F `  k ) )  < 
( 2nd `  ( F `  k )
) )  ->  ( 1st `  ( F `  k ) )  < 
( 2nd `  ( F `  k )
) )
3534iftrued 4094 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( 1st `  ( F `  k ) )  < 
( 2nd `  ( F `  k )
) )  ->  if ( ( 1st `  ( F `  k )
)  <  ( 2nd `  ( F `  k
) ) ,  ( ( 2nd `  ( F `  k )
)  -  ( 1st `  ( F `  k
) ) ) ,  0 )  =  ( ( 2nd `  ( F `  k )
)  -  ( 1st `  ( F `  k
) ) ) )
3613, 23sylan 488 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1st `  ( F `  k
) )  e.  RR )
3736adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )  ->  ( 1st `  ( F `  k ) )  e.  RR )
3813, 25sylan 488 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( 2nd `  ( F `  k
) )  e.  RR )
3938adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )  ->  ( 2nd `  ( F `  k ) )  e.  RR )
40 ressxr 10083 . . . . . . . . . . . 12  |-  RR  C_  RR*
4140, 37sseldi 3601 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )  ->  ( 1st `  ( F `  k ) )  e. 
RR* )
4240, 39sseldi 3601 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )  ->  ( 2nd `  ( F `  k ) )  e. 
RR* )
43 xpss 5226 . . . . . . . . . . . . . . . . . 18  |-  ( RR 
X.  RR )  C_  ( _V  X.  _V )
4443, 21sseldi 3601 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( F `  k
)  e.  ( _V 
X.  _V ) )
45 1st2ndb 7206 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  k )  e.  ( _V  X.  _V )  <->  ( F `  k )  =  <. ( 1st `  ( F `
 k ) ) ,  ( 2nd `  ( F `  k )
) >. )
4644, 45sylib 208 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( F `  k
)  =  <. ( 1st `  ( F `  k ) ) ,  ( 2nd `  ( F `  k )
) >. )
4713, 46sylan 488 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  = 
<. ( 1st `  ( F `  k )
) ,  ( 2nd `  ( F `  k
) ) >. )
4847eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  <. ( 1st `  ( F `  k ) ) ,  ( 2nd `  ( F `  k )
) >.  =  ( F `
 k ) )
49 inss1 3833 . . . . . . . . . . . . . . . . 17  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  <_
5049a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  (  <_  i^i  ( RR  X.  RR ) ) 
C_  <_  )
516, 50fssd 6057 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : NN -->  <_  )
5251ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e. 
<_  )
5348, 52eqeltrd 2701 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  <. ( 1st `  ( F `  k ) ) ,  ( 2nd `  ( F `  k )
) >.  e.  <_  )
54 df-br 4654 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( F `
 k ) )  <_  ( 2nd `  ( F `  k )
)  <->  <. ( 1st `  ( F `  k )
) ,  ( 2nd `  ( F `  k
) ) >.  e.  <_  )
5553, 54sylibr 224 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1st `  ( F `  k
) )  <_  ( 2nd `  ( F `  k ) ) )
5655adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )  ->  ( 1st `  ( F `  k ) )  <_ 
( 2nd `  ( F `  k )
) )
57 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )  ->  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )
5839, 37lenltd 10183 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )  ->  (
( 2nd `  ( F `  k )
)  <_  ( 1st `  ( F `  k
) )  <->  -.  ( 1st `  ( F `  k ) )  < 
( 2nd `  ( F `  k )
) ) )
5957, 58mpbird 247 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )  ->  ( 2nd `  ( F `  k ) )  <_ 
( 1st `  ( F `  k )
) )
6041, 42, 56, 59xrletrid 11986 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )  ->  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )
61 simp3 1063 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )
62 simp1 1061 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  ( 1st `  ( F `  k ) )  e.  RR )
63 simp2 1062 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  ( 2nd `  ( F `  k ) )  e.  RR )
6462, 63eqleltd 10181 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  (
( 1st `  ( F `  k )
)  =  ( 2nd `  ( F `  k
) )  <->  ( ( 1st `  ( F `  k ) )  <_ 
( 2nd `  ( F `  k )
)  /\  -.  ( 1st `  ( F `  k ) )  < 
( 2nd `  ( F `  k )
) ) ) )
6561, 64mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  (
( 1st `  ( F `  k )
)  <_  ( 2nd `  ( F `  k
) )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) ) )
6665simprd 479 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )
6766iffalsed 4097 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  if ( ( 1st `  ( F `  k )
)  <  ( 2nd `  ( F `  k
) ) ,  ( ( 2nd `  ( F `  k )
)  -  ( 1st `  ( F `  k
) ) ) ,  0 )  =  0 )
6863recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  ( 2nd `  ( F `  k ) )  e.  CC )
6961eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  ( 2nd `  ( F `  k ) )  =  ( 1st `  ( F `  k )
) )
7068, 69subeq0bd 10456 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  (
( 2nd `  ( F `  k )
)  -  ( 1st `  ( F `  k
) ) )  =  0 )
7167, 70eqtr4d 2659 . . . . . . . . . 10  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR  /\  ( 1st `  ( F `  k ) )  =  ( 2nd `  ( F `  k )
) )  ->  if ( ( 1st `  ( F `  k )
)  <  ( 2nd `  ( F `  k
) ) ,  ( ( 2nd `  ( F `  k )
)  -  ( 1st `  ( F `  k
) ) ) ,  0 )  =  ( ( 2nd `  ( F `  k )
)  -  ( 1st `  ( F `  k
) ) ) )
7237, 39, 60, 71syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  -.  ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) )  ->  if ( ( 1st `  ( F `  k )
)  <  ( 2nd `  ( F `  k
) ) ,  ( ( 2nd `  ( F `  k )
)  -  ( 1st `  ( F `  k
) ) ) ,  0 )  =  ( ( 2nd `  ( F `  k )
)  -  ( 1st `  ( F `  k
) ) ) )
7335, 72pm2.61dan 832 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  if ( ( 1st `  ( F `  k )
)  <  ( 2nd `  ( F `  k
) ) ,  ( ( 2nd `  ( F `  k )
)  -  ( 1st `  ( F `  k
) ) ) ,  0 )  =  ( ( 2nd `  ( F `  k )
)  -  ( 1st `  ( F `  k
) ) ) )
74 volico 40200 . . . . . . . . 9  |-  ( ( ( 1st `  ( F `  k )
)  e.  RR  /\  ( 2nd `  ( F `
 k ) )  e.  RR )  -> 
( vol `  (
( 1st `  ( F `  k )
) [,) ( 2nd `  ( F `  k
) ) ) )  =  if ( ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) ,  ( ( 2nd `  ( F `
 k ) )  -  ( 1st `  ( F `  k )
) ) ,  0 ) )
7536, 38, 74syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol `  ( ( 1st `  ( F `  k )
) [,) ( 2nd `  ( F `  k
) ) ) )  =  if ( ( 1st `  ( F `
 k ) )  <  ( 2nd `  ( F `  k )
) ,  ( ( 2nd `  ( F `
 k ) )  -  ( 1st `  ( F `  k )
) ) ,  0 ) )
7636, 38, 55abssuble0d 14171 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( 1st `  ( F `  k )
)  -  ( 2nd `  ( F `  k
) ) ) )  =  ( ( 2nd `  ( F `  k
) )  -  ( 1st `  ( F `  k ) ) ) )
7773, 75, 763eqtr4d 2666 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol `  ( ( 1st `  ( F `  k )
) [,) ( 2nd `  ( F `  k
) ) ) )  =  ( abs `  (
( 1st `  ( F `  k )
)  -  ( 2nd `  ( F `  k
) ) ) ) )
7813adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  F  e.  ( ( RR  X.  RR )  ^m  NN ) )
79 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
8078, 79, 20syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol `  ( ( [,)  o.  F ) `  k
) )  =  ( vol `  ( ( 1st `  ( F `
 k ) ) [,) ( 2nd `  ( F `  k )
) ) ) )
8146fveq2d 6195 . . . . . . . . 9  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( ( abs  o.  -  ) `  ( F `  k )
)  =  ( ( abs  o.  -  ) `  <. ( 1st `  ( F `  k )
) ,  ( 2nd `  ( F `  k
) ) >. )
)
82 df-ov 6653 . . . . . . . . . . 11  |-  ( ( 1st `  ( F `
 k ) ) ( abs  o.  -  ) ( 2nd `  ( F `  k )
) )  =  ( ( abs  o.  -  ) `  <. ( 1st `  ( F `  k
) ) ,  ( 2nd `  ( F `
 k ) )
>. )
8382eqcomi 2631 . . . . . . . . . 10  |-  ( ( abs  o.  -  ) `  <. ( 1st `  ( F `  k )
) ,  ( 2nd `  ( F `  k
) ) >. )  =  ( ( 1st `  ( F `  k
) ) ( abs 
o.  -  ) ( 2nd `  ( F `  k ) ) )
8483a1i 11 . . . . . . . . 9  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( ( abs  o.  -  ) `  <. ( 1st `  ( F `
 k ) ) ,  ( 2nd `  ( F `  k )
) >. )  =  ( ( 1st `  ( F `  k )
) ( abs  o.  -  ) ( 2nd `  ( F `  k
) ) ) )
8523recnd 10068 . . . . . . . . . 10  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( 1st `  ( F `  k )
)  e.  CC )
8625recnd 10068 . . . . . . . . . 10  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( 2nd `  ( F `  k )
)  e.  CC )
87 eqid 2622 . . . . . . . . . . 11  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
8887cnmetdval 22574 . . . . . . . . . 10  |-  ( ( ( 1st `  ( F `  k )
)  e.  CC  /\  ( 2nd `  ( F `
 k ) )  e.  CC )  -> 
( ( 1st `  ( F `  k )
) ( abs  o.  -  ) ( 2nd `  ( F `  k
) ) )  =  ( abs `  (
( 1st `  ( F `  k )
)  -  ( 2nd `  ( F `  k
) ) ) ) )
8985, 86, 88syl2anc 693 . . . . . . . . 9  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( ( 1st `  ( F `  k )
) ( abs  o.  -  ) ( 2nd `  ( F `  k
) ) )  =  ( abs `  (
( 1st `  ( F `  k )
)  -  ( 2nd `  ( F `  k
) ) ) ) )
9081, 84, 893eqtrd 2660 . . . . . . . 8  |-  ( ( F  e.  ( ( RR  X.  RR )  ^m  NN )  /\  k  e.  NN )  ->  ( ( abs  o.  -  ) `  ( F `  k )
)  =  ( abs `  ( ( 1st `  ( F `  k )
)  -  ( 2nd `  ( F `  k
) ) ) ) )
9178, 79, 90syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs  o.  -  ) `  ( F `  k
) )  =  ( abs `  ( ( 1st `  ( F `
 k ) )  -  ( 2nd `  ( F `  k )
) ) ) )
9277, 80, 913eqtr4d 2666 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol `  ( ( [,)  o.  F ) `  k
) )  =  ( ( abs  o.  -  ) `  ( F `  k ) ) )
9392mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( k  e.  NN  |->  ( vol `  ( ( [,)  o.  F ) `
 k ) ) )  =  ( k  e.  NN  |->  ( ( abs  o.  -  ) `  ( F `  k
) ) ) )
9413, 16syl 17 . . . . . 6  |-  ( ph  ->  F : NN --> ( RR 
X.  RR ) )
95 rr2sscn2 39582 . . . . . . 7  |-  ( RR 
X.  RR )  C_  ( CC  X.  CC )
9695a1i 11 . . . . . 6  |-  ( ph  ->  ( RR  X.  RR )  C_  ( CC  X.  CC ) )
97 absf 14077 . . . . . . . 8  |-  abs : CC
--> RR
98 subf 10283 . . . . . . . 8  |-  -  :
( CC  X.  CC )
--> CC
99 fco 6058 . . . . . . . 8  |-  ( ( abs : CC --> RR  /\  -  : ( CC  X.  CC ) --> CC )  -> 
( abs  o.  -  ) : ( CC  X.  CC ) --> RR )
10097, 98, 99mp2an 708 . . . . . . 7  |-  ( abs 
o.  -  ) :
( CC  X.  CC )
--> RR
101100a1i 11 . . . . . 6  |-  ( ph  ->  ( abs  o.  -  ) : ( CC  X.  CC ) --> RR )
10294, 96, 101fcomptss 39395 . . . . 5  |-  ( ph  ->  ( ( abs  o.  -  )  o.  F
)  =  ( k  e.  NN  |->  ( ( abs  o.  -  ) `  ( F `  k
) ) ) )
10393, 102eqtr4d 2659 . . . 4  |-  ( ph  ->  ( k  e.  NN  |->  ( vol `  ( ( [,)  o.  F ) `
 k ) ) )  =  ( ( abs  o.  -  )  o.  F ) )
104103seqeq3d 12809 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( k  e.  NN  |->  ( vol `  (
( [,)  o.  F
) `  k )
) ) )  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) ) )
10533, 104eqtr2d 2657 . 2  |-  ( ph  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )  =  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) ( vol `  ( ( [,)  o.  F ) `
 k ) ) ) )
106105rneqd 5353 1  |-  ( ph  ->  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  F ) )  =  ran  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) ( vol `  (
( [,)  o.  F
) `  k )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ifcif 4086   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   [,)cico 12177   ...cfz 12326    seqcseq 12801   abscabs 13974   sum_csu 14416   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator