MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclem Structured version   Visualization version   Unicode version

Theorem pclem 15543
Description: - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypothesis
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
Assertion
Ref Expression
pclem  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x ) )
Distinct variable groups:    x, y, A    x, n, y, N    P, n, x, y
Allowed substitution hint:    A( n)

Proof of Theorem pclem
StepHypRef Expression
1 pclem.1 . . . . 5  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
2 ssrab2 3687 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  C_  NN0
31, 2eqsstri 3635 . . . 4  |-  A  C_  NN0
4 nn0ssz 11398 . . . 4  |-  NN0  C_  ZZ
53, 4sstri 3612 . . 3  |-  A  C_  ZZ
65a1i 11 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A  C_  ZZ )
7 0nn0 11307 . . . . 5  |-  0  e.  NN0
87a1i 11 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
0  e.  NN0 )
9 eluzelcn 11699 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  CC )
109adantr 481 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  CC )
1110exp0d 13002 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ 0 )  =  1 )
12 1dvds 14996 . . . . . 6  |-  ( N  e.  ZZ  ->  1  ||  N )
1312ad2antrl 764 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
1  ||  N )
1411, 13eqbrtrd 4675 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ 0 )  ||  N )
15 oveq2 6658 . . . . . 6  |-  ( n  =  0  ->  ( P ^ n )  =  ( P ^ 0 ) )
1615breq1d 4663 . . . . 5  |-  ( n  =  0  ->  (
( P ^ n
)  ||  N  <->  ( P ^ 0 )  ||  N ) )
1716, 1elrab2 3366 . . . 4  |-  ( 0  e.  A  <->  ( 0  e.  NN0  /\  ( P ^ 0 )  ||  N ) )
188, 14, 17sylanbrc 698 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
0  e.  A )
19 ne0i 3921 . . 3  |-  ( 0  e.  A  ->  A  =/=  (/) )
2018, 19syl 17 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A  =/=  (/) )
21 nnssz 11397 . . 3  |-  NN  C_  ZZ
22 zcn 11382 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
2322abscld 14175 . . . . . 6  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
2423ad2antrl 764 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( abs `  N
)  e.  RR )
25 eluzelre 11698 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
2625adantr 481 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  RR )
27 eluz2b2 11761 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
2827simprbi 480 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
2928adantr 481 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
1  <  P )
30 expnbnd 12993 . . . . 5  |-  ( ( ( abs `  N
)  e.  RR  /\  P  e.  RR  /\  1  <  P )  ->  E. x  e.  NN  ( abs `  N
)  <  ( P ^ x ) )
3124, 26, 29, 30syl3anc 1326 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  NN  ( abs `  N )  <  ( P ^
x ) )
32 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  A )
33 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( n  =  y  ->  ( P ^ n )  =  ( P ^ y
) )
3433breq1d 4663 . . . . . . . . . . . . . 14  |-  ( n  =  y  ->  (
( P ^ n
)  ||  N  <->  ( P ^ y )  ||  N ) )
3534, 1elrab2 3366 . . . . . . . . . . . . 13  |-  ( y  e.  A  <->  ( y  e.  NN0  /\  ( P ^ y )  ||  N ) )
3632, 35sylib 208 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( y  e.  NN0  /\  ( P ^ y
)  ||  N )
)
3736simprd 479 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  ||  N )
38 eluz2nn 11726 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
3938ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  P  e.  NN )
4036simpld 475 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  NN0 )
4139, 40nnexpcld 13030 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  e.  NN )
4241nnzd 11481 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  e.  ZZ )
43 simplrl 800 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  N  e.  ZZ )
44 simplrr 801 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  N  =/=  0 )
45 dvdsleabs 15033 . . . . . . . . . . . 12  |-  ( ( ( P ^ y
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( P ^ y
)  ||  N  ->  ( P ^ y )  <_  ( abs `  N
) ) )
4642, 43, 44, 45syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( P ^
y )  ||  N  ->  ( P ^ y
)  <_  ( abs `  N ) ) )
4737, 46mpd 15 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  <_  ( abs `  N ) )
4841nnred 11035 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  e.  RR )
4924adantr 481 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( abs `  N
)  e.  RR )
5025ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  P  e.  RR )
51 nnnn0 11299 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  NN0 )
5251ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  x  e.  NN0 )
5350, 52reexpcld 13025 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ x
)  e.  RR )
54 lelttr 10128 . . . . . . . . . . 11  |-  ( ( ( P ^ y
)  e.  RR  /\  ( abs `  N )  e.  RR  /\  ( P ^ x )  e.  RR )  ->  (
( ( P ^
y )  <_  ( abs `  N )  /\  ( abs `  N )  <  ( P ^
x ) )  -> 
( P ^ y
)  <  ( P ^ x ) ) )
5548, 49, 53, 54syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( ( P ^ y )  <_ 
( abs `  N
)  /\  ( abs `  N )  <  ( P ^ x ) )  ->  ( P ^
y )  <  ( P ^ x ) ) )
5647, 55mpand 711 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( abs `  N
)  <  ( P ^ x )  -> 
( P ^ y
)  <  ( P ^ x ) ) )
5740nn0zd 11480 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  ZZ )
58 nnz 11399 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  ZZ )
5958ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  x  e.  ZZ )
6028ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
1  <  P )
6150, 57, 59, 60ltexp2d 13038 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( y  <  x  <->  ( P ^ y )  <  ( P ^
x ) ) )
6256, 61sylibrd 249 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( abs `  N
)  <  ( P ^ x )  -> 
y  <  x )
)
6340nn0red 11352 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  RR )
64 nnre 11027 . . . . . . . . . 10  |-  ( x  e.  NN  ->  x  e.  RR )
6564ad2antrl 764 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  x  e.  RR )
66 ltle 10126 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <  x  ->  y  <_  x )
)
6763, 65, 66syl2anc 693 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( y  <  x  ->  y  <_  x )
)
6862, 67syld 47 . . . . . . 7  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( abs `  N
)  <  ( P ^ x )  -> 
y  <_  x )
)
6968anassrs 680 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  NN )  /\  y  e.  A )  ->  (
( abs `  N
)  <  ( P ^ x )  -> 
y  <_  x )
)
7069ralrimdva 2969 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  NN )  ->  (
( abs `  N
)  <  ( P ^ x )  ->  A. y  e.  A  y  <_  x ) )
7170reximdva 3017 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( E. x  e.  NN  ( abs `  N
)  <  ( P ^ x )  ->  E. x  e.  NN  A. y  e.  A  y  <_  x ) )
7231, 71mpd 15 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  NN  A. y  e.  A  y  <_  x )
73 ssrexv 3667 . . 3  |-  ( NN  C_  ZZ  ->  ( E. x  e.  NN  A. y  e.  A  y  <_  x  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x ) )
7421, 72, 73mpsyl 68 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
756, 20, 743jca 1242 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ^cexp 12860   abscabs 13974    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  pcprecl  15544  pcprendvds  15545  pcpremul  15548
  Copyright terms: Public domain W3C validator