MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppidif Structured version   Visualization version   Unicode version

Theorem ppidif 24889
Description: The difference of the prime-counting function π at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
ppidif  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (π `  N )  -  (π `  M ) )  =  ( # `  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) ) )

Proof of Theorem ppidif
StepHypRef Expression
1 eluzelz 11697 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2 eluzel2 11692 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
3 2z 11409 . . . . . . 7  |-  2  e.  ZZ
4 ifcl 4130 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  2  e.  ZZ )  ->  if ( M  <_ 
2 ,  M , 
2 )  e.  ZZ )
52, 3, 4sylancl 694 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  if ( M  <_  2 ,  M ,  2 )  e.  ZZ )
63a1i 11 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  2  e.  ZZ )
72zred 11482 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  RR )
8 2re 11090 . . . . . . 7  |-  2  e.  RR
9 min2 12021 . . . . . . 7  |-  ( ( M  e.  RR  /\  2  e.  RR )  ->  if ( M  <_ 
2 ,  M , 
2 )  <_  2
)
107, 8, 9sylancl 694 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  if ( M  <_  2 ,  M ,  2 )  <_ 
2 )
11 eluz2 11693 . . . . . 6  |-  ( 2  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) )  <->  ( if ( M  <_  2 ,  M ,  2 )  e.  ZZ  /\  2  e.  ZZ  /\  if ( M  <_  2 ,  M ,  2 )  <_  2 ) )
125, 6, 10, 11syl3anbrc 1246 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  2  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) ) )
13 ppival2g 24855 . . . . 5  |-  ( ( N  e.  ZZ  /\  2  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) ) )  ->  (π `  N )  =  (
# `  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) ) )
141, 12, 13syl2anc 693 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  (π `  N
)  =  ( # `  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime ) ) )
15 min1 12020 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  2  e.  RR )  ->  if ( M  <_ 
2 ,  M , 
2 )  <_  M
)
167, 8, 15sylancl 694 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  if ( M  <_  2 ,  M ,  2 )  <_  M )
17 eluz2 11693 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) )  <->  ( if ( M  <_  2 ,  M ,  2 )  e.  ZZ  /\  M  e.  ZZ  /\  if ( M  <_  2 ,  M ,  2 )  <_  M ) )
185, 2, 16, 17syl3anbrc 1246 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) ) )
19 id 22 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( ZZ>= `  M )
)
20 elfzuzb 12336 . . . . . . . . 9  |-  ( M  e.  ( if ( M  <_  2 ,  M ,  2 ) ... N )  <->  ( M  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) )  /\  N  e.  (
ZZ>= `  M ) ) )
2118, 19, 20sylanbrc 698 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( if ( M  <_ 
2 ,  M , 
2 ) ... N
) )
22 fzsplit 12367 . . . . . . . 8  |-  ( M  e.  ( if ( M  <_  2 ,  M ,  2 ) ... N )  -> 
( if ( M  <_  2 ,  M ,  2 ) ... N )  =  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  u.  (
( M  +  1 ) ... N ) ) )
2321, 22syl 17 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( if ( M  <_  2 ,  M ,  2 ) ... N )  =  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  u.  ( ( M  + 
1 ) ... N
) ) )
2423ineq1d 3813 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime )  =  (
( ( if ( M  <_  2 ,  M ,  2 ) ... M )  u.  ( ( M  + 
1 ) ... N
) )  i^i  Prime ) )
25 indir 3875 . . . . . 6  |-  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  u.  (
( M  +  1 ) ... N ) )  i^i  Prime )  =  ( ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime )  u.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) )
2624, 25syl6eq 2672 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i 
Prime )  =  (
( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  u.  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) ) )
2726fveq2d 6195 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( # `  (
( if ( M  <_  2 ,  M ,  2 ) ... N )  i^i  Prime ) )  =  ( # `  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  u.  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) ) ) )
287ltp1d 10954 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <  ( M  +  1 ) )
29 fzdisj 12368 . . . . . . . 8  |-  ( M  <  ( M  + 
1 )  ->  (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
3028, 29syl 17 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  ( ( M  + 
1 ) ... N
) )  =  (/) )
3130ineq1d 3813 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  (
( M  +  1 ) ... N ) )  i^i  Prime )  =  ( (/)  i^i  Prime ) )
32 inindir 3831 . . . . . 6  |-  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  (
( M  +  1 ) ... N ) )  i^i  Prime )  =  ( ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime )  i^i  ( ( ( M  +  1 ) ... N )  i^i  Prime ) )
33 0in 3969 . . . . . 6  |-  ( (/)  i^i 
Prime )  =  (/)
3431, 32, 333eqtr3g 2679 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime )  i^i  ( ( ( M  +  1 ) ... N )  i^i 
Prime ) )  =  (/) )
35 fzfi 12771 . . . . . . 7  |-  ( if ( M  <_  2 ,  M ,  2 ) ... M )  e. 
Fin
36 inss1 3833 . . . . . . 7  |-  ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime )  C_  ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)
37 ssfi 8180 . . . . . . 7  |-  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  e.  Fin  /\  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  C_  ( if ( M  <_  2 ,  M ,  2 ) ... M ) )  ->  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  e.  Fin )
3835, 36, 37mp2an 708 . . . . . 6  |-  ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime )  e. 
Fin
39 fzfi 12771 . . . . . . 7  |-  ( ( M  +  1 ) ... N )  e. 
Fin
40 inss1 3833 . . . . . . 7  |-  ( ( ( M  +  1 ) ... N )  i^i  Prime )  C_  (
( M  +  1 ) ... N )
41 ssfi 8180 . . . . . . 7  |-  ( ( ( ( M  + 
1 ) ... N
)  e.  Fin  /\  ( ( ( M  +  1 ) ... N )  i^i  Prime ) 
C_  ( ( M  +  1 ) ... N ) )  -> 
( ( ( M  +  1 ) ... N )  i^i  Prime )  e.  Fin )
4239, 40, 41mp2an 708 . . . . . 6  |-  ( ( ( M  +  1 ) ... N )  i^i  Prime )  e.  Fin
43 hashun 13171 . . . . . 6  |-  ( ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  e.  Fin  /\  ( ( ( M  +  1 ) ... N )  i^i  Prime )  e.  Fin  /\  (
( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  i^i  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) )  =  (/) )  ->  ( # `
 ( ( ( if ( M  <_ 
2 ,  M , 
2 ) ... M
)  i^i  Prime )  u.  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ) )  =  ( ( # `  (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime ) )  +  ( # `  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ) ) )
4438, 42, 43mp3an12 1414 . . . . 5  |-  ( ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  i^i  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) )  =  (/)  ->  ( # `  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  u.  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) ) )  =  ( (
# `  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) )  +  (
# `  ( (
( M  +  1 ) ... N )  i^i  Prime ) ) ) )
4534, 44syl 17 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( # `  (
( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime )  u.  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) ) )  =  ( (
# `  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) )  +  (
# `  ( (
( M  +  1 ) ... N )  i^i  Prime ) ) ) )
4614, 27, 453eqtrd 2660 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  (π `  N
)  =  ( (
# `  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) )  +  (
# `  ( (
( M  +  1 ) ... N )  i^i  Prime ) ) ) )
47 ppival2g 24855 . . . 4  |-  ( ( M  e.  ZZ  /\  2  e.  ( ZZ>= `  if ( M  <_  2 ,  M ,  2 ) ) )  ->  (π `  M )  =  (
# `  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ) )
482, 12, 47syl2anc 693 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  (π `  M
)  =  ( # `  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ) )
4946, 48oveq12d 6668 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (π `  N )  -  (π `  M ) )  =  ( ( ( # `  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) )  +  (
# `  ( (
( M  +  1 ) ... N )  i^i  Prime ) ) )  -  ( # `  (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime ) ) ) )
50 hashcl 13147 . . . . 5  |-  ( ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime )  e.  Fin  ->  ( # `
 ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) )  e.  NN0 )
5138, 50ax-mp 5 . . . 4  |-  ( # `  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) )  e.  NN0
5251nn0cni 11304 . . 3  |-  ( # `  ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) )  e.  CC
53 hashcl 13147 . . . . 5  |-  ( ( ( ( M  + 
1 ) ... N
)  i^i  Prime )  e. 
Fin  ->  ( # `  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) )  e.  NN0 )
5442, 53ax-mp 5 . . . 4  |-  ( # `  ( ( ( M  +  1 ) ... N )  i^i  Prime ) )  e.  NN0
5554nn0cni 11304 . . 3  |-  ( # `  ( ( ( M  +  1 ) ... N )  i^i  Prime ) )  e.  CC
56 pncan2 10288 . . 3  |-  ( ( ( # `  (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime ) )  e.  CC  /\  ( # `  ( ( ( M  +  1 ) ... N )  i^i  Prime ) )  e.  CC )  ->  (
( ( # `  (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime ) )  +  ( # `  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ) )  -  ( # `
 ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ) )  =  ( # `  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) ) )
5752, 55, 56mp2an 708 . 2  |-  ( ( ( # `  (
( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i  Prime ) )  +  ( # `  ( ( ( M  +  1 ) ... N )  i^i  Prime ) ) )  -  ( # `
 ( ( if ( M  <_  2 ,  M ,  2 ) ... M )  i^i 
Prime ) ) )  =  ( # `  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) )
5849, 57syl6eq 2672 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (π `  N )  -  (π `  M ) )  =  ( # `  (
( ( M  + 
1 ) ... N
)  i^i  Prime ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117   Primecprime 15385  πcppi 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-icc 12182  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-ppi 24826
This theorem is referenced by:  ppiub  24929  chtppilimlem1  25162
  Copyright terms: Public domain W3C validator