MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem1 Structured version   Visualization version   Unicode version

Theorem chtppilimlem1 25162
Description: Lemma for chtppilim 25164. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1  |-  ( ph  ->  A  e.  RR+ )
chtppilim.2  |-  ( ph  ->  A  <  1 )
chtppilim.3  |-  ( ph  ->  N  e.  ( 2 [,) +oo ) )
chtppilim.4  |-  ( ph  ->  ( ( N  ^c  A )  /  (π `  N ) )  < 
( 1  -  A
) )
Assertion
Ref Expression
chtppilimlem1  |-  ( ph  ->  ( ( A ^
2 )  x.  (
(π `  N )  x.  ( log `  N
) ) )  < 
( theta `  N )
)

Proof of Theorem chtppilimlem1
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 chtppilim.1 . . . . . . 7  |-  ( ph  ->  A  e.  RR+ )
21rpred 11872 . . . . . 6  |-  ( ph  ->  A  e.  RR )
32recnd 10068 . . . . 5  |-  ( ph  ->  A  e.  CC )
43sqvald 13005 . . . 4  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
54oveq1d 6665 . . 3  |-  ( ph  ->  ( ( A ^
2 )  x.  (
(π `  N )  x.  ( log `  N
) ) )  =  ( ( A  x.  A )  x.  (
(π `  N )  x.  ( log `  N
) ) ) )
6 chtppilim.3 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( 2 [,) +oo ) )
7 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
8 elicopnf 12269 . . . . . . . . . 10  |-  ( 2  e.  RR  ->  ( N  e.  ( 2 [,) +oo )  <->  ( N  e.  RR  /\  2  <_  N ) ) )
97, 8ax-mp 5 . . . . . . . . 9  |-  ( N  e.  ( 2 [,) +oo )  <->  ( N  e.  RR  /\  2  <_  N ) )
106, 9sylib 208 . . . . . . . 8  |-  ( ph  ->  ( N  e.  RR  /\  2  <_  N )
)
1110simpld 475 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
12 ppicl 24857 . . . . . . 7  |-  ( N  e.  RR  ->  (π `  N )  e.  NN0 )
1311, 12syl 17 . . . . . 6  |-  ( ph  ->  (π `  N )  e. 
NN0 )
1413nn0red 11352 . . . . 5  |-  ( ph  ->  (π `  N )  e.  RR )
1514recnd 10068 . . . 4  |-  ( ph  ->  (π `  N )  e.  CC )
16 0red 10041 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
177a1i 11 . . . . . . . 8  |-  ( ph  ->  2  e.  RR )
18 2pos 11112 . . . . . . . . 9  |-  0  <  2
1918a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <  2 )
2010simprd 479 . . . . . . . 8  |-  ( ph  ->  2  <_  N )
2116, 17, 11, 19, 20ltletrd 10197 . . . . . . 7  |-  ( ph  ->  0  <  N )
2211, 21elrpd 11869 . . . . . 6  |-  ( ph  ->  N  e.  RR+ )
2322relogcld 24369 . . . . 5  |-  ( ph  ->  ( log `  N
)  e.  RR )
2423recnd 10068 . . . 4  |-  ( ph  ->  ( log `  N
)  e.  CC )
253, 3, 15, 24mul4d 10248 . . 3  |-  ( ph  ->  ( ( A  x.  A )  x.  (
(π `  N )  x.  ( log `  N
) ) )  =  ( ( A  x.  (π `
 N ) )  x.  ( A  x.  ( log `  N ) ) ) )
265, 25eqtrd 2656 . 2  |-  ( ph  ->  ( ( A ^
2 )  x.  (
(π `  N )  x.  ( log `  N
) ) )  =  ( ( A  x.  (π `
 N ) )  x.  ( A  x.  ( log `  N ) ) ) )
272, 14remulcld 10070 . . . 4  |-  ( ph  ->  ( A  x.  (π `  N ) )  e.  RR )
282, 23remulcld 10070 . . . 4  |-  ( ph  ->  ( A  x.  ( log `  N ) )  e.  RR )
2927, 28remulcld 10070 . . 3  |-  ( ph  ->  ( ( A  x.  (π `
 N ) )  x.  ( A  x.  ( log `  N ) ) )  e.  RR )
3022, 2rpcxpcld 24476 . . . . . . . 8  |-  ( ph  ->  ( N  ^c  A )  e.  RR+ )
3130rpred 11872 . . . . . . 7  |-  ( ph  ->  ( N  ^c  A )  e.  RR )
32 ppicl 24857 . . . . . . 7  |-  ( ( N  ^c  A )  e.  RR  ->  (π `  ( N  ^c  A ) )  e. 
NN0 )
3331, 32syl 17 . . . . . 6  |-  ( ph  ->  (π `  ( N  ^c  A ) )  e. 
NN0 )
3433nn0red 11352 . . . . 5  |-  ( ph  ->  (π `  ( N  ^c  A ) )  e.  RR )
3514, 34resubcld 10458 . . . 4  |-  ( ph  ->  ( (π `  N )  -  (π `
 ( N  ^c  A ) ) )  e.  RR )
3635, 28remulcld 10070 . . 3  |-  ( ph  ->  ( ( (π `  N
)  -  (π `  ( N  ^c  A ) ) )  x.  ( A  x.  ( log `  N ) ) )  e.  RR )
37 chtcl 24835 . . . 4  |-  ( N  e.  RR  ->  ( theta `  N )  e.  RR )
3811, 37syl 17 . . 3  |-  ( ph  ->  ( theta `  N )  e.  RR )
39 1red 10055 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
40 1lt2 11194 . . . . . . . 8  |-  1  <  2
4140a1i 11 . . . . . . 7  |-  ( ph  ->  1  <  2 )
4239, 17, 11, 41, 20ltletrd 10197 . . . . . 6  |-  ( ph  ->  1  <  N )
4311, 42rplogcld 24375 . . . . 5  |-  ( ph  ->  ( log `  N
)  e.  RR+ )
441, 43rpmulcld 11888 . . . 4  |-  ( ph  ->  ( A  x.  ( log `  N ) )  e.  RR+ )
4514, 31resubcld 10458 . . . . 5  |-  ( ph  ->  ( (π `  N )  -  ( N  ^c  A ) )  e.  RR )
46 ppinncl 24900 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  2  <_  N )  -> 
(π `  N )  e.  NN )
4710, 46syl 17 . . . . . . . . 9  |-  ( ph  ->  (π `  N )  e.  NN )
4831, 47nndivred 11069 . . . . . . . 8  |-  ( ph  ->  ( ( N  ^c  A )  /  (π `  N ) )  e.  RR )
49 chtppilim.4 . . . . . . . 8  |-  ( ph  ->  ( ( N  ^c  A )  /  (π `  N ) )  < 
( 1  -  A
) )
5048, 39, 2, 49ltsub13d 10633 . . . . . . 7  |-  ( ph  ->  A  <  ( 1  -  ( ( N  ^c  A )  /  (π `  N ) ) ) )
5131recnd 10068 . . . . . . . . 9  |-  ( ph  ->  ( N  ^c  A )  e.  CC )
5247nnrpd 11870 . . . . . . . . . 10  |-  ( ph  ->  (π `  N )  e.  RR+ )
5352rpcnne0d 11881 . . . . . . . . 9  |-  ( ph  ->  ( (π `  N )  e.  CC  /\  (π `  N
)  =/=  0 ) )
54 divsubdir 10721 . . . . . . . . 9  |-  ( ( (π `  N )  e.  CC  /\  ( N  ^c  A )  e.  CC  /\  (
(π `  N )  e.  CC  /\  (π `  N
)  =/=  0 ) )  ->  ( (
(π `  N )  -  ( N  ^c  A ) )  / 
(π `  N ) )  =  ( ( (π `  N )  /  (π `  N ) )  -  ( ( N  ^c  A )  /  (π `  N ) ) ) )
5515, 51, 53, 54syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( ( (π `  N
)  -  ( N  ^c  A ) )  /  (π `  N
) )  =  ( ( (π `  N )  / 
(π `  N ) )  -  ( ( N  ^c  A )  /  (π `  N ) ) ) )
56 divid 10714 . . . . . . . . . 10  |-  ( ( (π `  N )  e.  CC  /\  (π `  N
)  =/=  0 )  ->  ( (π `  N
)  /  (π `  N
) )  =  1 )
5753, 56syl 17 . . . . . . . . 9  |-  ( ph  ->  ( (π `  N )  / 
(π `  N ) )  =  1 )
5857oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( (π `  N
)  /  (π `  N
) )  -  (
( N  ^c  A )  /  (π `  N ) ) )  =  ( 1  -  ( ( N  ^c  A )  /  (π `  N ) ) ) )
5955, 58eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( (π `  N
)  -  ( N  ^c  A ) )  /  (π `  N
) )  =  ( 1  -  ( ( N  ^c  A )  /  (π `  N
) ) ) )
6050, 59breqtrrd 4681 . . . . . 6  |-  ( ph  ->  A  <  ( ( (π `  N )  -  ( N  ^c  A ) )  / 
(π `  N ) ) )
612, 45, 52ltmuldivd 11919 . . . . . 6  |-  ( ph  ->  ( ( A  x.  (π `
 N ) )  <  ( (π `  N
)  -  ( N  ^c  A ) )  <->  A  <  ( ( (π `  N )  -  ( N  ^c  A ) )  / 
(π `  N ) ) ) )
6260, 61mpbird 247 . . . . 5  |-  ( ph  ->  ( A  x.  (π `  N ) )  < 
( (π `  N )  -  ( N  ^c  A ) ) )
63 ppiltx 24903 . . . . . . 7  |-  ( ( N  ^c  A )  e.  RR+  ->  (π `  ( N  ^c  A ) )  < 
( N  ^c  A ) )
6430, 63syl 17 . . . . . 6  |-  ( ph  ->  (π `  ( N  ^c  A ) )  < 
( N  ^c  A ) )
6534, 31, 14, 64ltsub2dd 10640 . . . . 5  |-  ( ph  ->  ( (π `  N )  -  ( N  ^c  A ) )  < 
( (π `  N )  -  (π `
 ( N  ^c  A ) ) ) )
6627, 45, 35, 62, 65lttrd 10198 . . . 4  |-  ( ph  ->  ( A  x.  (π `  N ) )  < 
( (π `  N )  -  (π `
 ( N  ^c  A ) ) ) )
6727, 35, 44, 66ltmul1dd 11927 . . 3  |-  ( ph  ->  ( ( A  x.  (π `
 N ) )  x.  ( A  x.  ( log `  N ) ) )  <  (
( (π `  N )  -  (π `
 ( N  ^c  A ) ) )  x.  ( A  x.  ( log `  N ) ) ) )
68 fzfid 12772 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  e.  Fin )
69 inss1 3833 . . . . . 6  |-  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime )  C_  (
( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )
70 ssfi 8180 . . . . . 6  |-  ( ( ( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  e.  Fin  /\  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime )  C_  (
( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) ) )  ->  ( (
( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime )  e.  Fin )
7168, 69, 70sylancl 694 . . . . 5  |-  ( ph  ->  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime )  e.  Fin )
72 inss2 3834 . . . . . . . 8  |-  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime )  C_  Prime
73 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )
7472, 73sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  p  e.  Prime )
75 prmnn 15388 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  NN )
7675nnrpd 11870 . . . . . . 7  |-  ( p  e.  Prime  ->  p  e.  RR+ )
7774, 76syl 17 . . . . . 6  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  p  e.  RR+ )
7877relogcld 24369 . . . . 5  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  ( log `  p )  e.  RR )
7971, 78fsumrecl 14465 . . . 4  |-  ( ph  -> 
sum_ p  e.  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ( log `  p )  e.  RR )
8028recnd 10068 . . . . . . 7  |-  ( ph  ->  ( A  x.  ( log `  N ) )  e.  CC )
81 fsumconst 14522 . . . . . . 7  |-  ( ( ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime )  e.  Fin  /\  ( A  x.  ( log `  N ) )  e.  CC )  ->  sum_ p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ( A  x.  ( log `  N
) )  =  ( ( # `  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) )  x.  ( A  x.  ( log `  N ) ) ) )
8271, 80, 81syl2anc 693 . . . . . 6  |-  ( ph  -> 
sum_ p  e.  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ( A  x.  ( log `  N
) )  =  ( ( # `  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) )  x.  ( A  x.  ( log `  N ) ) ) )
83 ppifl 24886 . . . . . . . . . 10  |-  ( N  e.  RR  ->  (π `  ( |_ `  N
) )  =  (π `  N ) )
8411, 83syl 17 . . . . . . . . 9  |-  ( ph  ->  (π `  ( |_ `  N ) )  =  (π `  N ) )
85 ppifl 24886 . . . . . . . . . 10  |-  ( ( N  ^c  A )  e.  RR  ->  (π `  ( |_ `  ( N  ^c  A ) ) )  =  (π `  ( N  ^c  A ) ) )
8631, 85syl 17 . . . . . . . . 9  |-  ( ph  ->  (π `  ( |_ `  ( N  ^c  A ) ) )  =  (π `  ( N  ^c  A ) ) )
8784, 86oveq12d 6668 . . . . . . . 8  |-  ( ph  ->  ( (π `  ( |_ `  N ) )  -  (π `
 ( |_ `  ( N  ^c  A ) ) ) )  =  ( (π `  N )  -  (π `  ( N  ^c  A ) ) ) )
8839, 11, 42ltled 10185 . . . . . . . . . . . 12  |-  ( ph  ->  1  <_  N )
89 chtppilim.2 . . . . . . . . . . . . 13  |-  ( ph  ->  A  <  1 )
90 1re 10039 . . . . . . . . . . . . . 14  |-  1  e.  RR
91 ltle 10126 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  <  1  ->  A  <_  1 ) )
922, 90, 91sylancl 694 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  <  1  ->  A  <_  1 ) )
9389, 92mpd 15 . . . . . . . . . . . 12  |-  ( ph  ->  A  <_  1 )
9411, 88, 2, 39, 93cxplead 24467 . . . . . . . . . . 11  |-  ( ph  ->  ( N  ^c  A )  <_  ( N  ^c  1 ) )
9511recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  CC )
9695cxp1d 24452 . . . . . . . . . . 11  |-  ( ph  ->  ( N  ^c 
1 )  =  N )
9794, 96breqtrd 4679 . . . . . . . . . 10  |-  ( ph  ->  ( N  ^c  A )  <_  N
)
98 flword2 12614 . . . . . . . . . 10  |-  ( ( ( N  ^c  A )  e.  RR  /\  N  e.  RR  /\  ( N  ^c  A )  <_  N
)  ->  ( |_ `  N )  e.  (
ZZ>= `  ( |_ `  ( N  ^c  A ) ) ) )
9931, 11, 97, 98syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  N
)  e.  ( ZZ>= `  ( |_ `  ( N  ^c  A ) ) ) )
100 ppidif 24889 . . . . . . . . 9  |-  ( ( |_ `  N )  e.  ( ZZ>= `  ( |_ `  ( N  ^c  A ) ) )  ->  ( (π `  ( |_ `  N ) )  -  (π `  ( |_ `  ( N  ^c  A ) ) ) )  =  ( # `  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) ) )
10199, 100syl 17 . . . . . . . 8  |-  ( ph  ->  ( (π `  ( |_ `  N ) )  -  (π `
 ( |_ `  ( N  ^c  A ) ) ) )  =  ( # `  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) ) )
10287, 101eqtr3d 2658 . . . . . . 7  |-  ( ph  ->  ( (π `  N )  -  (π `
 ( N  ^c  A ) ) )  =  ( # `  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ) )
103102oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( (π `  N
)  -  (π `  ( N  ^c  A ) ) )  x.  ( A  x.  ( log `  N ) ) )  =  ( ( # `  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  x.  ( A  x.  ( log `  N ) ) ) )
10482, 103eqtr4d 2659 . . . . 5  |-  ( ph  -> 
sum_ p  e.  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ( A  x.  ( log `  N
) )  =  ( ( (π `  N )  -  (π `
 ( N  ^c  A ) ) )  x.  ( A  x.  ( log `  N ) ) ) )
10528adantr 481 . . . . . 6  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  ( A  x.  ( log `  N ) )  e.  RR )
10631adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  ( N  ^c  A )  e.  RR )
107 reflcl 12597 . . . . . . . . . . 11  |-  ( ( N  ^c  A )  e.  RR  ->  ( |_ `  ( N  ^c  A ) )  e.  RR )
108 peano2re 10209 . . . . . . . . . . 11  |-  ( ( |_ `  ( N  ^c  A ) )  e.  RR  ->  ( ( |_ `  ( N  ^c  A ) )  +  1 )  e.  RR )
10931, 107, 1083syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( ( |_ `  ( N  ^c  A ) )  +  1 )  e.  RR )
110109adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  (
( |_ `  ( N  ^c  A ) )  +  1 )  e.  RR )
11177rpred 11872 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  p  e.  RR )
112 fllep1 12602 . . . . . . . . . . 11  |-  ( ( N  ^c  A )  e.  RR  ->  ( N  ^c  A )  <_  ( ( |_ `  ( N  ^c  A ) )  +  1 ) )
11331, 112syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( N  ^c  A )  <_  (
( |_ `  ( N  ^c  A ) )  +  1 ) )
114113adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  ( N  ^c  A )  <_  ( ( |_
`  ( N  ^c  A ) )  +  1 ) )
11569, 73sseldi 3601 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  p  e.  ( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) ) )
116 elfzle1 12344 . . . . . . . . . 10  |-  ( p  e.  ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  -> 
( ( |_ `  ( N  ^c  A ) )  +  1 )  <_  p
)
117115, 116syl 17 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  (
( |_ `  ( N  ^c  A ) )  +  1 )  <_  p )
118106, 110, 111, 114, 117letrd 10194 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  ( N  ^c  A )  <_  p )
11922rpne0d 11877 . . . . . . . . . . 11  |-  ( ph  ->  N  =/=  0 )
12095, 119, 3cxpefd 24458 . . . . . . . . . 10  |-  ( ph  ->  ( N  ^c  A )  =  ( exp `  ( A  x.  ( log `  N
) ) ) )
121120eqcomd 2628 . . . . . . . . 9  |-  ( ph  ->  ( exp `  ( A  x.  ( log `  N ) ) )  =  ( N  ^c  A ) )
122121adantr 481 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  ( exp `  ( A  x.  ( log `  N ) ) )  =  ( N  ^c  A ) )
12377reeflogd 24370 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  ( exp `  ( log `  p
) )  =  p )
124118, 122, 1233brtr4d 4685 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  ( exp `  ( A  x.  ( log `  N ) ) )  <_  ( exp `  ( log `  p
) ) )
125 efle 14848 . . . . . . . 8  |-  ( ( ( A  x.  ( log `  N ) )  e.  RR  /\  ( log `  p )  e.  RR )  ->  (
( A  x.  ( log `  N ) )  <_  ( log `  p
)  <->  ( exp `  ( A  x.  ( log `  N ) ) )  <_  ( exp `  ( log `  p ) ) ) )
126105, 78, 125syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  (
( A  x.  ( log `  N ) )  <_  ( log `  p
)  <->  ( exp `  ( A  x.  ( log `  N ) ) )  <_  ( exp `  ( log `  p ) ) ) )
127124, 126mpbird 247 . . . . . 6  |-  ( (
ph  /\  p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) )  ->  ( A  x.  ( log `  N ) )  <_ 
( log `  p
) )
12871, 105, 78, 127fsumle 14531 . . . . 5  |-  ( ph  -> 
sum_ p  e.  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ( A  x.  ( log `  N
) )  <_  sum_ p  e.  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime ) ( log `  p
) )
129104, 128eqbrtrrd 4677 . . . 4  |-  ( ph  ->  ( ( (π `  N
)  -  (π `  ( N  ^c  A ) ) )  x.  ( A  x.  ( log `  N ) ) )  <_  sum_ p  e.  ( ( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ( log `  p ) )
130 fzfid 12772 . . . . . . 7  |-  ( ph  ->  ( 1 ... ( |_ `  N ) )  e.  Fin )
131 inss1 3833 . . . . . . 7  |-  ( ( 1 ... ( |_
`  N ) )  i^i  Prime )  C_  (
1 ... ( |_ `  N ) )
132 ssfi 8180 . . . . . . 7  |-  ( ( ( 1 ... ( |_ `  N ) )  e.  Fin  /\  (
( 1 ... ( |_ `  N ) )  i^i  Prime )  C_  (
1 ... ( |_ `  N ) ) )  ->  ( ( 1 ... ( |_ `  N ) )  i^i 
Prime )  e.  Fin )
133130, 131, 132sylancl 694 . . . . . 6  |-  ( ph  ->  ( ( 1 ... ( |_ `  N
) )  i^i  Prime )  e.  Fin )
134 inss2 3834 . . . . . . . . . . . . 13  |-  ( ( 1 ... ( |_
`  N ) )  i^i  Prime )  C_  Prime
135 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )  ->  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )
136134, 135sseldi 3601 . . . . . . . . . . . 12  |-  ( (
ph  /\  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )  ->  p  e.  Prime )
137 prmuz2 15408 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
138136, 137syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )  ->  p  e.  ( ZZ>= `  2 )
)
139 eluz2b2 11761 . . . . . . . . . . 11  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
140138, 139sylib 208 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )  ->  ( p  e.  NN  /\  1  < 
p ) )
141140simpld 475 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )  ->  p  e.  NN )
142141nnred 11035 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )  ->  p  e.  RR )
143140simprd 479 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )  ->  1  <  p )
144142, 143rplogcld 24375 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )  ->  ( log `  p )  e.  RR+ )
145144rpred 11872 . . . . . 6  |-  ( (
ph  /\  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )  ->  ( log `  p )  e.  RR )
146144rpge0d 11876 . . . . . 6  |-  ( (
ph  /\  p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) )  ->  0  <_  ( log `  p ) )
14730rpge0d 11876 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( N  ^c  A )
)
148 flge0nn0 12621 . . . . . . . . . 10  |-  ( ( ( N  ^c  A )  e.  RR  /\  0  <_  ( N  ^c  A )
)  ->  ( |_ `  ( N  ^c  A ) )  e. 
NN0 )
14931, 147, 148syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  ( N  ^c  A ) )  e.  NN0 )
150 nn0p1nn 11332 . . . . . . . . 9  |-  ( ( |_ `  ( N  ^c  A ) )  e.  NN0  ->  ( ( |_ `  ( N  ^c  A ) )  +  1 )  e.  NN )
151149, 150syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( |_ `  ( N  ^c  A ) )  +  1 )  e.  NN )
152 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
153151, 152syl6eleq 2711 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  ( N  ^c  A ) )  +  1 )  e.  (
ZZ>= `  1 ) )
154 fzss1 12380 . . . . . . 7  |-  ( ( ( |_ `  ( N  ^c  A ) )  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  C_  ( 1 ... ( |_ `  N ) ) )
155 ssrin 3838 . . . . . . 7  |-  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) ) 
C_  ( 1 ... ( |_ `  N
) )  ->  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime )  C_  (
( 1 ... ( |_ `  N ) )  i^i  Prime ) )
156153, 154, 1553syl 18 . . . . . 6  |-  ( ph  ->  ( ( ( ( |_ `  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i 
Prime )  C_  ( ( 1 ... ( |_
`  N ) )  i^i  Prime ) )
157133, 145, 146, 156fsumless 14528 . . . . 5  |-  ( ph  -> 
sum_ p  e.  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ( log `  p )  <_  sum_ p  e.  ( ( 1 ... ( |_ `  N
) )  i^i  Prime ) ( log `  p
) )
158 chtval 24836 . . . . . . 7  |-  ( N  e.  RR  ->  ( theta `  N )  = 
sum_ p  e.  (
( 0 [,] N
)  i^i  Prime ) ( log `  p ) )
15911, 158syl 17 . . . . . 6  |-  ( ph  ->  ( theta `  N )  =  sum_ p  e.  ( ( 0 [,] N
)  i^i  Prime ) ( log `  p ) )
160 2eluzge1 11734 . . . . . . . 8  |-  2  e.  ( ZZ>= `  1 )
161 ppisval2 24831 . . . . . . . 8  |-  ( ( N  e.  RR  /\  2  e.  ( ZZ>= ` 
1 ) )  -> 
( ( 0 [,] N )  i^i  Prime )  =  ( ( 1 ... ( |_ `  N ) )  i^i 
Prime ) )
16211, 160, 161sylancl 694 . . . . . . 7  |-  ( ph  ->  ( ( 0 [,] N )  i^i  Prime )  =  ( ( 1 ... ( |_ `  N ) )  i^i 
Prime ) )
163162sumeq1d 14431 . . . . . 6  |-  ( ph  -> 
sum_ p  e.  (
( 0 [,] N
)  i^i  Prime ) ( log `  p )  =  sum_ p  e.  ( ( 1 ... ( |_ `  N ) )  i^i  Prime ) ( log `  p ) )
164159, 163eqtrd 2656 . . . . 5  |-  ( ph  ->  ( theta `  N )  =  sum_ p  e.  ( ( 1 ... ( |_ `  N ) )  i^i  Prime ) ( log `  p ) )
165157, 164breqtrrd 4681 . . . 4  |-  ( ph  -> 
sum_ p  e.  (
( ( ( |_
`  ( N  ^c  A ) )  +  1 ) ... ( |_ `  N ) )  i^i  Prime ) ( log `  p )  <_  ( theta `  N ) )
16636, 79, 38, 129, 165letrd 10194 . . 3  |-  ( ph  ->  ( ( (π `  N
)  -  (π `  ( N  ^c  A ) ) )  x.  ( A  x.  ( log `  N ) ) )  <_  ( theta `  N
) )
16729, 36, 38, 67, 166ltletrd 10197 . 2  |-  ( ph  ->  ( ( A  x.  (π `
 N ) )  x.  ( A  x.  ( log `  N ) ) )  <  ( theta `  N ) )
16826, 167eqbrtrd 4675 1  |-  ( ph  ->  ( ( A ^
2 )  x.  (
(π `  N )  x.  ( log `  N
) ) )  < 
( theta `  N )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZ>=cuz 11687   RR+crp 11832   [,)cico 12177   [,]cicc 12178   ...cfz 12326   |_cfl 12591   ^cexp 12860   #chash 13117   sum_csu 14416   expce 14792   Primecprime 15385   logclog 24301    ^c ccxp 24302   thetaccht 24817  πcppi 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-prm 15386  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-cht 24823  df-ppi 24826
This theorem is referenced by:  chtppilimlem2  25163
  Copyright terms: Public domain W3C validator