MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnghm Structured version   Visualization version   Unicode version

Theorem psgnghm 19926
Description: The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnghm.s  |-  S  =  ( SymGrp `  D )
psgnghm.n  |-  N  =  (pmSgn `  D )
psgnghm.f  |-  F  =  ( Ss  dom  N )
psgnghm.u  |-  U  =  ( (mulGrp ` fld )s  { 1 ,  -u
1 } )
Assertion
Ref Expression
psgnghm  |-  ( D  e.  V  ->  N  e.  ( F  GrpHom  U ) )

Proof of Theorem psgnghm
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnghm.s . . . . . 6  |-  S  =  ( SymGrp `  D )
2 eqid 2622 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2622 . . . . . 6  |-  { x  e.  ( Base `  S
)  |  dom  (
x  \  _I  )  e.  Fin }  =  {
x  e.  ( Base `  S )  |  dom  ( x  \  _I  )  e.  Fin }
4 psgnghm.n . . . . . 6  |-  N  =  (pmSgn `  D )
51, 2, 3, 4psgnfn 17921 . . . . 5  |-  N  Fn  { x  e.  ( Base `  S )  |  dom  ( x  \  _I  )  e.  Fin }
6 fndm 5990 . . . . 5  |-  ( N  Fn  { x  e.  ( Base `  S
)  |  dom  (
x  \  _I  )  e.  Fin }  ->  dom  N  =  { x  e.  ( Base `  S
)  |  dom  (
x  \  _I  )  e.  Fin } )
75, 6ax-mp 5 . . . 4  |-  dom  N  =  { x  e.  (
Base `  S )  |  dom  ( x  \  _I  )  e.  Fin }
8 ssrab2 3687 . . . 4  |-  { x  e.  ( Base `  S
)  |  dom  (
x  \  _I  )  e.  Fin }  C_  ( Base `  S )
97, 8eqsstri 3635 . . 3  |-  dom  N  C_  ( Base `  S
)
10 psgnghm.f . . . 4  |-  F  =  ( Ss  dom  N )
1110, 2ressbas2 15931 . . 3  |-  ( dom 
N  C_  ( Base `  S )  ->  dom  N  =  ( Base `  F
) )
129, 11ax-mp 5 . 2  |-  dom  N  =  ( Base `  F
)
13 psgnghm.u . . 3  |-  U  =  ( (mulGrp ` fld )s  { 1 ,  -u
1 } )
1413cnmsgnbas 19924 . 2  |-  { 1 ,  -u 1 }  =  ( Base `  U )
15 fvex 6201 . . . 4  |-  ( Base `  F )  e.  _V
1612, 15eqeltri 2697 . . 3  |-  dom  N  e.  _V
17 eqid 2622 . . . 4  |-  ( +g  `  S )  =  ( +g  `  S )
1810, 17ressplusg 15993 . . 3  |-  ( dom 
N  e.  _V  ->  ( +g  `  S )  =  ( +g  `  F
) )
1916, 18ax-mp 5 . 2  |-  ( +g  `  S )  =  ( +g  `  F )
20 prex 4909 . . 3  |-  { 1 ,  -u 1 }  e.  _V
21 eqid 2622 . . . . 5  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
22 cnfldmul 19752 . . . . 5  |-  x.  =  ( .r ` fld )
2321, 22mgpplusg 18493 . . . 4  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
2413, 23ressplusg 15993 . . 3  |-  ( { 1 ,  -u 1 }  e.  _V  ->  x.  =  ( +g  `  U
) )
2520, 24ax-mp 5 . 2  |-  x.  =  ( +g  `  U )
261, 4psgndmsubg 17922 . . 3  |-  ( D  e.  V  ->  dom  N  e.  (SubGrp `  S
) )
2710subggrp 17597 . . 3  |-  ( dom 
N  e.  (SubGrp `  S )  ->  F  e.  Grp )
2826, 27syl 17 . 2  |-  ( D  e.  V  ->  F  e.  Grp )
2913cnmsgngrp 19925 . . 3  |-  U  e. 
Grp
3029a1i 11 . 2  |-  ( D  e.  V  ->  U  e.  Grp )
31 fnfun 5988 . . . . . 6  |-  ( N  Fn  { x  e.  ( Base `  S
)  |  dom  (
x  \  _I  )  e.  Fin }  ->  Fun  N )
325, 31ax-mp 5 . . . . 5  |-  Fun  N
33 funfn 5918 . . . . 5  |-  ( Fun 
N  <->  N  Fn  dom  N )
3432, 33mpbi 220 . . . 4  |-  N  Fn  dom  N
3534a1i 11 . . 3  |-  ( D  e.  V  ->  N  Fn  dom  N )
36 eqid 2622 . . . . . 6  |-  ran  (pmTrsp `  D )  =  ran  (pmTrsp `  D )
371, 36, 4psgnvali 17928 . . . . 5  |-  ( x  e.  dom  N  ->  E. z  e. Word  ran  (pmTrsp `  D ) ( x  =  ( S  gsumg  z )  /\  ( N `  x )  =  (
-u 1 ^ ( # `
 z ) ) ) )
38 lencl 13324 . . . . . . . . . . 11  |-  ( z  e. Word  ran  (pmTrsp `  D
)  ->  ( # `  z
)  e.  NN0 )
3938nn0zd 11480 . . . . . . . . . 10  |-  ( z  e. Word  ran  (pmTrsp `  D
)  ->  ( # `  z
)  e.  ZZ )
40 m1expcl2 12882 . . . . . . . . . . 11  |-  ( (
# `  z )  e.  ZZ  ->  ( -u 1 ^ ( # `  z
) )  e.  { -u 1 ,  1 } )
41 prcom 4267 . . . . . . . . . . 11  |-  { -u
1 ,  1 }  =  { 1 , 
-u 1 }
4240, 41syl6eleq 2711 . . . . . . . . . 10  |-  ( (
# `  z )  e.  ZZ  ->  ( -u 1 ^ ( # `  z
) )  e.  {
1 ,  -u 1 } )
4339, 42syl 17 . . . . . . . . 9  |-  ( z  e. Word  ran  (pmTrsp `  D
)  ->  ( -u 1 ^ ( # `  z
) )  e.  {
1 ,  -u 1 } )
4443adantl 482 . . . . . . . 8  |-  ( ( D  e.  V  /\  z  e. Word  ran  (pmTrsp `  D ) )  -> 
( -u 1 ^ ( # `
 z ) )  e.  { 1 , 
-u 1 } )
45 eleq1a 2696 . . . . . . . 8  |-  ( (
-u 1 ^ ( # `
 z ) )  e.  { 1 , 
-u 1 }  ->  ( ( N `  x
)  =  ( -u
1 ^ ( # `  z ) )  -> 
( N `  x
)  e.  { 1 ,  -u 1 } ) )
4644, 45syl 17 . . . . . . 7  |-  ( ( D  e.  V  /\  z  e. Word  ran  (pmTrsp `  D ) )  -> 
( ( N `  x )  =  (
-u 1 ^ ( # `
 z ) )  ->  ( N `  x )  e.  {
1 ,  -u 1 } ) )
4746adantld 483 . . . . . 6  |-  ( ( D  e.  V  /\  z  e. Word  ran  (pmTrsp `  D ) )  -> 
( ( x  =  ( S  gsumg  z )  /\  ( N `  x )  =  ( -u 1 ^ ( # `  z
) ) )  -> 
( N `  x
)  e.  { 1 ,  -u 1 } ) )
4847rexlimdva 3031 . . . . 5  |-  ( D  e.  V  ->  ( E. z  e. Word  ran  (pmTrsp `  D ) ( x  =  ( S  gsumg  z )  /\  ( N `  x )  =  (
-u 1 ^ ( # `
 z ) ) )  ->  ( N `  x )  e.  {
1 ,  -u 1 } ) )
4937, 48syl5 34 . . . 4  |-  ( D  e.  V  ->  (
x  e.  dom  N  ->  ( N `  x
)  e.  { 1 ,  -u 1 } ) )
5049ralrimiv 2965 . . 3  |-  ( D  e.  V  ->  A. x  e.  dom  N ( N `
 x )  e. 
{ 1 ,  -u
1 } )
51 ffnfv 6388 . . 3  |-  ( N : dom  N --> { 1 ,  -u 1 }  <->  ( N  Fn  dom  N  /\  A. x  e.  dom  N ( N `  x )  e.  { 1 , 
-u 1 } ) )
5235, 50, 51sylanbrc 698 . 2  |-  ( D  e.  V  ->  N : dom  N --> { 1 ,  -u 1 } )
531, 36, 4psgnvali 17928 . . . . . 6  |-  ( y  e.  dom  N  ->  E. w  e. Word  ran  (pmTrsp `  D ) ( y  =  ( S  gsumg  w )  /\  ( N `  y )  =  (
-u 1 ^ ( # `
 w ) ) ) )
5437, 53anim12i 590 . . . . 5  |-  ( ( x  e.  dom  N  /\  y  e.  dom  N )  ->  ( E. z  e. Word  ran  (pmTrsp `  D ) ( x  =  ( S  gsumg  z )  /\  ( N `  x )  =  (
-u 1 ^ ( # `
 z ) ) )  /\  E. w  e. Word  ran  (pmTrsp `  D
) ( y  =  ( S  gsumg  w )  /\  ( N `  y )  =  ( -u 1 ^ ( # `  w
) ) ) ) )
55 reeanv 3107 . . . . 5  |-  ( E. z  e. Word  ran  (pmTrsp `  D ) E. w  e. Word  ran  (pmTrsp `  D
) ( ( x  =  ( S  gsumg  z )  /\  ( N `  x )  =  (
-u 1 ^ ( # `
 z ) ) )  /\  ( y  =  ( S  gsumg  w )  /\  ( N `  y )  =  (
-u 1 ^ ( # `
 w ) ) ) )  <->  ( E. z  e. Word  ran  (pmTrsp `  D ) ( x  =  ( S  gsumg  z )  /\  ( N `  x )  =  (
-u 1 ^ ( # `
 z ) ) )  /\  E. w  e. Word  ran  (pmTrsp `  D
) ( y  =  ( S  gsumg  w )  /\  ( N `  y )  =  ( -u 1 ^ ( # `  w
) ) ) ) )
5654, 55sylibr 224 . . . 4  |-  ( ( x  e.  dom  N  /\  y  e.  dom  N )  ->  E. z  e. Word  ran  (pmTrsp `  D
) E. w  e. Word  ran  (pmTrsp `  D )
( ( x  =  ( S  gsumg  z )  /\  ( N `  x )  =  ( -u 1 ^ ( # `  z
) ) )  /\  ( y  =  ( S  gsumg  w )  /\  ( N `  y )  =  ( -u 1 ^ ( # `  w
) ) ) ) )
57 ccatcl 13359 . . . . . . . 8  |-  ( ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D
) )  ->  (
z ++  w )  e. Word  ran  (pmTrsp `  D )
)
581, 36, 4psgnvalii 17929 . . . . . . . 8  |-  ( ( D  e.  V  /\  ( z ++  w )  e. Word  ran  (pmTrsp `  D
) )  ->  ( N `  ( S  gsumg  ( z ++  w ) ) )  =  ( -u
1 ^ ( # `  ( z ++  w ) ) ) )
5957, 58sylan2 491 . . . . . . 7  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( N `  ( S  gsumg  ( z ++  w ) ) )  =  (
-u 1 ^ ( # `
 ( z ++  w
) ) ) )
601symggrp 17820 . . . . . . . . . . 11  |-  ( D  e.  V  ->  S  e.  Grp )
61 grpmnd 17429 . . . . . . . . . . 11  |-  ( S  e.  Grp  ->  S  e.  Mnd )
6260, 61syl 17 . . . . . . . . . 10  |-  ( D  e.  V  ->  S  e.  Mnd )
6336, 1, 2symgtrf 17889 . . . . . . . . . . . 12  |-  ran  (pmTrsp `  D )  C_  ( Base `  S )
64 sswrd 13313 . . . . . . . . . . . 12  |-  ( ran  (pmTrsp `  D )  C_  ( Base `  S
)  -> Word  ran  (pmTrsp `  D )  C_ Word  ( Base `  S ) )
6563, 64ax-mp 5 . . . . . . . . . . 11  |- Word  ran  (pmTrsp `  D )  C_ Word  ( Base `  S )
6665sseli 3599 . . . . . . . . . 10  |-  ( z  e. Word  ran  (pmTrsp `  D
)  ->  z  e. Word  (
Base `  S )
)
6765sseli 3599 . . . . . . . . . 10  |-  ( w  e. Word  ran  (pmTrsp `  D
)  ->  w  e. Word  (
Base `  S )
)
682, 17gsumccat 17378 . . . . . . . . . 10  |-  ( ( S  e.  Mnd  /\  z  e. Word  ( Base `  S
)  /\  w  e. Word  (
Base `  S )
)  ->  ( S  gsumg  ( z ++  w ) )  =  ( ( S 
gsumg  z ) ( +g  `  S ) ( S 
gsumg  w ) ) )
6962, 66, 67, 68syl3an 1368 . . . . . . . . 9  |-  ( ( D  e.  V  /\  z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D
) )  ->  ( S  gsumg  ( z ++  w ) )  =  ( ( S  gsumg  z ) ( +g  `  S ) ( S 
gsumg  w ) ) )
70693expb 1266 . . . . . . . 8  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( S  gsumg  ( z ++  w ) )  =  ( ( S  gsumg  z ) ( +g  `  S
) ( S  gsumg  w ) ) )
7170fveq2d 6195 . . . . . . 7  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( N `  ( S  gsumg  ( z ++  w ) ) )  =  ( N `  ( ( S  gsumg  z ) ( +g  `  S ) ( S 
gsumg  w ) ) ) )
72 ccatlen 13360 . . . . . . . . . 10  |-  ( ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D
) )  ->  ( # `
 ( z ++  w
) )  =  ( ( # `  z
)  +  ( # `  w ) ) )
7372adantl 482 . . . . . . . . 9  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( # `  (
z ++  w ) )  =  ( ( # `  z )  +  (
# `  w )
) )
7473oveq2d 6666 . . . . . . . 8  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( -u 1 ^ ( # `  (
z ++  w ) ) )  =  ( -u
1 ^ ( (
# `  z )  +  ( # `  w
) ) ) )
75 neg1cn 11124 . . . . . . . . . 10  |-  -u 1  e.  CC
7675a1i 11 . . . . . . . . 9  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  -u 1  e.  CC )
77 lencl 13324 . . . . . . . . . 10  |-  ( w  e. Word  ran  (pmTrsp `  D
)  ->  ( # `  w
)  e.  NN0 )
7877ad2antll 765 . . . . . . . . 9  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( # `  w
)  e.  NN0 )
7938ad2antrl 764 . . . . . . . . 9  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( # `  z
)  e.  NN0 )
8076, 78, 79expaddd 13010 . . . . . . . 8  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( -u 1 ^ ( ( # `  z )  +  (
# `  w )
) )  =  ( ( -u 1 ^ ( # `  z
) )  x.  ( -u 1 ^ ( # `  w ) ) ) )
8174, 80eqtrd 2656 . . . . . . 7  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( -u 1 ^ ( # `  (
z ++  w ) ) )  =  ( (
-u 1 ^ ( # `
 z ) )  x.  ( -u 1 ^ ( # `  w
) ) ) )
8259, 71, 813eqtr3d 2664 . . . . . 6  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( N `  ( ( S  gsumg  z ) ( +g  `  S
) ( S  gsumg  w ) ) )  =  ( ( -u 1 ^ ( # `  z
) )  x.  ( -u 1 ^ ( # `  w ) ) ) )
83 oveq12 6659 . . . . . . . . 9  |-  ( ( x  =  ( S 
gsumg  z )  /\  y  =  ( S  gsumg  w ) )  ->  ( x
( +g  `  S ) y )  =  ( ( S  gsumg  z ) ( +g  `  S ) ( S 
gsumg  w ) ) )
8483fveq2d 6195 . . . . . . . 8  |-  ( ( x  =  ( S 
gsumg  z )  /\  y  =  ( S  gsumg  w ) )  ->  ( N `  ( x ( +g  `  S ) y ) )  =  ( N `
 ( ( S 
gsumg  z ) ( +g  `  S ) ( S 
gsumg  w ) ) ) )
85 oveq12 6659 . . . . . . . 8  |-  ( ( ( N `  x
)  =  ( -u
1 ^ ( # `  z ) )  /\  ( N `  y )  =  ( -u 1 ^ ( # `  w
) ) )  -> 
( ( N `  x )  x.  ( N `  y )
)  =  ( (
-u 1 ^ ( # `
 z ) )  x.  ( -u 1 ^ ( # `  w
) ) ) )
8684, 85eqeqan12d 2638 . . . . . . 7  |-  ( ( ( x  =  ( S  gsumg  z )  /\  y  =  ( S  gsumg  w ) )  /\  ( ( N `  x )  =  ( -u 1 ^ ( # `  z
) )  /\  ( N `  y )  =  ( -u 1 ^ ( # `  w
) ) ) )  ->  ( ( N `
 ( x ( +g  `  S ) y ) )  =  ( ( N `  x )  x.  ( N `  y )
)  <->  ( N `  ( ( S  gsumg  z ) ( +g  `  S
) ( S  gsumg  w ) ) )  =  ( ( -u 1 ^ ( # `  z
) )  x.  ( -u 1 ^ ( # `  w ) ) ) ) )
8786an4s 869 . . . . . 6  |-  ( ( ( x  =  ( S  gsumg  z )  /\  ( N `  x )  =  ( -u 1 ^ ( # `  z
) ) )  /\  ( y  =  ( S  gsumg  w )  /\  ( N `  y )  =  ( -u 1 ^ ( # `  w
) ) ) )  ->  ( ( N `
 ( x ( +g  `  S ) y ) )  =  ( ( N `  x )  x.  ( N `  y )
)  <->  ( N `  ( ( S  gsumg  z ) ( +g  `  S
) ( S  gsumg  w ) ) )  =  ( ( -u 1 ^ ( # `  z
) )  x.  ( -u 1 ^ ( # `  w ) ) ) ) )
8882, 87syl5ibrcom 237 . . . . 5  |-  ( ( D  e.  V  /\  ( z  e. Word  ran  (pmTrsp `  D )  /\  w  e. Word  ran  (pmTrsp `  D ) ) )  ->  ( ( ( x  =  ( S 
gsumg  z )  /\  ( N `  x )  =  ( -u 1 ^ ( # `  z
) ) )  /\  ( y  =  ( S  gsumg  w )  /\  ( N `  y )  =  ( -u 1 ^ ( # `  w
) ) ) )  ->  ( N `  ( x ( +g  `  S ) y ) )  =  ( ( N `  x )  x.  ( N `  y ) ) ) )
8988rexlimdvva 3038 . . . 4  |-  ( D  e.  V  ->  ( E. z  e. Word  ran  (pmTrsp `  D ) E. w  e. Word  ran  (pmTrsp `  D
) ( ( x  =  ( S  gsumg  z )  /\  ( N `  x )  =  (
-u 1 ^ ( # `
 z ) ) )  /\  ( y  =  ( S  gsumg  w )  /\  ( N `  y )  =  (
-u 1 ^ ( # `
 w ) ) ) )  ->  ( N `  ( x
( +g  `  S ) y ) )  =  ( ( N `  x )  x.  ( N `  y )
) ) )
9056, 89syl5 34 . . 3  |-  ( D  e.  V  ->  (
( x  e.  dom  N  /\  y  e.  dom  N )  ->  ( N `  ( x ( +g  `  S ) y ) )  =  ( ( N `  x )  x.  ( N `  y ) ) ) )
9190imp 445 . 2  |-  ( ( D  e.  V  /\  ( x  e.  dom  N  /\  y  e.  dom  N ) )  ->  ( N `  ( x
( +g  `  S ) y ) )  =  ( ( N `  x )  x.  ( N `  y )
) )
9212, 14, 19, 25, 28, 30, 52, 91isghmd 17669 1  |-  ( D  e.  V  ->  N  e.  ( F  GrpHom  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {cpr 4179    _I cid 5023   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941   -ucneg 10267   NN0cn0 11292   ZZcz 11377   ^cexp 12860   #chash 13117  Word cword 13291   ++ cconcat 13293   Basecbs 15857   ↾s cress 15858   +g cplusg 15941    gsumg cgsu 16101   Mndcmnd 17294   Grpcgrp 17422  SubGrpcsubg 17588    GrpHom cghm 17657   SymGrpcsymg 17797  pmTrspcpmtr 17861  pmSgncpsgn 17909  mulGrpcmgp 18489  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-cnfld 19747
This theorem is referenced by:  psgnghm2  19927  evpmss  19932
  Copyright terms: Public domain W3C validator