MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resin4p Structured version   Visualization version   Unicode version

Theorem resin4p 14868
Description: Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
resin4p  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
Distinct variable groups:    A, k, n    k, F
Allowed substitution hint:    F( n)

Proof of Theorem resin4p
StepHypRef Expression
1 resinval 14865 . 2  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( Im `  ( exp `  ( _i  x.  A ) ) ) )
2 recn 10026 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
3 efi4p.1 . . . . . 6  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
43efi4p 14867 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
52, 4syl 17 . . . 4  |-  ( A  e.  RR  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
65fveq2d 6195 . . 3  |-  ( A  e.  RR  ->  (
Im `  ( exp `  ( _i  x.  A
) ) )  =  ( Im `  (
( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
7 1re 10039 . . . . . . 7  |-  1  e.  RR
8 resqcl 12931 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A ^ 2 )  e.  RR )
98rehalfcld 11279 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A ^ 2 )  /  2 )  e.  RR )
10 resubcl 10345 . . . . . . 7  |-  ( ( 1  e.  RR  /\  ( ( A ^
2 )  /  2
)  e.  RR )  ->  ( 1  -  ( ( A ^
2 )  /  2
) )  e.  RR )
117, 9, 10sylancr 695 . . . . . 6  |-  ( A  e.  RR  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  RR )
1211recnd 10068 . . . . 5  |-  ( A  e.  RR  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  CC )
13 ax-icn 9995 . . . . . 6  |-  _i  e.  CC
14 3nn0 11310 . . . . . . . . . 10  |-  3  e.  NN0
15 reexpcl 12877 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
1614, 15mpan2 707 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A ^ 3 )  e.  RR )
17 6re 11101 . . . . . . . . . 10  |-  6  e.  RR
18 6pos 11119 . . . . . . . . . . 11  |-  0  <  6
1917, 18gt0ne0ii 10564 . . . . . . . . . 10  |-  6  =/=  0
20 redivcl 10744 . . . . . . . . . 10  |-  ( ( ( A ^ 3 )  e.  RR  /\  6  e.  RR  /\  6  =/=  0 )  ->  (
( A ^ 3 )  /  6 )  e.  RR )
2117, 19, 20mp3an23 1416 . . . . . . . . 9  |-  ( ( A ^ 3 )  e.  RR  ->  (
( A ^ 3 )  /  6 )  e.  RR )
2216, 21syl 17 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( A ^ 3 )  /  6 )  e.  RR )
23 resubcl 10345 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( A ^
3 )  /  6
)  e.  RR )  ->  ( A  -  ( ( A ^
3 )  /  6
) )  e.  RR )
2422, 23mpdan 702 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  RR )
2524recnd 10068 . . . . . 6  |-  ( A  e.  RR  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  CC )
26 mulcl 10020 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( A  -  (
( A ^ 3 )  /  6 ) )  e.  CC )  ->  ( _i  x.  ( A  -  (
( A ^ 3 )  /  6 ) ) )  e.  CC )
2713, 25, 26sylancr 695 . . . . 5  |-  ( A  e.  RR  ->  (
_i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  e.  CC )
2812, 27addcld 10059 . . . 4  |-  ( A  e.  RR  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) )  e.  CC )
29 mulcl 10020 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
3013, 2, 29sylancr 695 . . . . 5  |-  ( A  e.  RR  ->  (
_i  x.  A )  e.  CC )
31 4nn0 11311 . . . . 5  |-  4  e.  NN0
323eftlcl 14837 . . . . 5  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k )  e.  CC )
3330, 31, 32sylancl 694 . . . 4  |-  ( A  e.  RR  ->  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
)  e.  CC )
3428, 33imaddd 13955 . . 3  |-  ( A  e.  RR  ->  (
Im `  ( (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) )  +  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) )  =  ( ( Im `  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) ) )
3511, 24crimd 13972 . . . 4  |-  ( A  e.  RR  ->  (
Im `  ( (
1  -  ( ( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  (
( A ^ 3 )  /  6 ) ) ) ) )  =  ( A  -  ( ( A ^
3 )  /  6
) ) )
3635oveq1d 6665 . . 3  |-  ( A  e.  RR  ->  (
( Im `  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) )  =  ( ( A  -  (
( A ^ 3 )  /  6 ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) ) )
376, 34, 363eqtrd 2660 . 2  |-  ( A  e.  RR  ->  (
Im `  ( exp `  ( _i  x.  A
) ) )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
381, 37eqtrd 2656 1  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   2c2 11070   3c3 11071   4c4 11072   6c6 11074   NN0cn0 11292   ZZ>=cuz 11687   ^cexp 12860   !cfa 13060   Imcim 13838   sum_csu 14416   expce 14792   sincsin 14794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800
This theorem is referenced by:  sin01bnd  14915
  Copyright terms: Public domain W3C validator