Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0p1 Structured version   Visualization version   Unicode version

Theorem sge0p1 40631
Description: The addition of the next term in a finite sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0p1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
sge0p1.2  |-  ( (
ph  /\  k  e.  ( M ... ( N  +  1 ) ) )  ->  A  e.  ( 0 [,] +oo ) )
sge0p1.3  |-  ( k  =  ( N  + 
1 )  ->  A  =  B )
Assertion
Ref Expression
sge0p1  |-  ( ph  ->  (Σ^ `  ( k  e.  ( M ... ( N  +  1 ) ) 
|->  A ) )  =  ( (Σ^ `  ( k  e.  ( M ... N ) 
|->  A ) ) +e B ) )
Distinct variable groups:    B, k    k, M    k, N    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem sge0p1
StepHypRef Expression
1 sge0p1.1 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 fzsuc 12388 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... ( N  +  1 ) )  =  ( ( M ... N
)  u.  { ( N  +  1 ) } ) )
31, 2syl 17 . . . 4  |-  ( ph  ->  ( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) )
43mpteq1d 4738 . . 3  |-  ( ph  ->  ( k  e.  ( M ... ( N  +  1 ) ) 
|->  A )  =  ( k  e.  ( ( M ... N )  u.  { ( N  +  1 ) } )  |->  A ) )
54fveq2d 6195 . 2  |-  ( ph  ->  (Σ^ `  ( k  e.  ( M ... ( N  +  1 ) ) 
|->  A ) )  =  (Σ^ `  ( k  e.  ( ( M ... N
)  u.  { ( N  +  1 ) } )  |->  A ) ) )
6 nfv 1843 . . 3  |-  F/ k
ph
7 ovex 6678 . . . 4  |-  ( M ... N )  e. 
_V
87a1i 11 . . 3  |-  ( ph  ->  ( M ... N
)  e.  _V )
9 snex 4908 . . . 4  |-  { ( N  +  1 ) }  e.  _V
109a1i 11 . . 3  |-  ( ph  ->  { ( N  + 
1 ) }  e.  _V )
11 fzp1disj 12399 . . . 4  |-  ( ( M ... N )  i^i  { ( N  +  1 ) } )  =  (/)
1211a1i 11 . . 3  |-  ( ph  ->  ( ( M ... N )  i^i  {
( N  +  1 ) } )  =  (/) )
13 0xr 10086 . . . . 5  |-  0  e.  RR*
1413a1i 11 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  e.  RR* )
15 pnfxr 10092 . . . . 5  |- +oo  e.  RR*
1615a1i 11 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  -> +oo  e.  RR* )
17 iccssxr 12256 . . . . 5  |-  ( 0 [,] +oo )  C_  RR*
18 simpl 473 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ph )
19 fzelp1 12393 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  k  e.  ( M ... ( N  +  1 ) ) )
2019adantl 482 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  k  e.  ( M ... ( N  +  1 ) ) )
21 sge0p1.2 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... ( N  +  1 ) ) )  ->  A  e.  ( 0 [,] +oo ) )
2218, 20, 21syl2anc 693 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  ( 0 [,] +oo ) )
2317, 22sseldi 3601 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  RR* )
24 iccgelb 12230 . . . . 5  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  A  e.  ( 0 [,] +oo ) )  ->  0  <_  A )
2514, 16, 22, 24syl3anc 1326 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  A )
26 iccleub 12229 . . . . 5  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  A  e.  ( 0 [,] +oo ) )  ->  A  <_ +oo )
2714, 16, 22, 26syl3anc 1326 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  <_ +oo )
2814, 16, 23, 25, 27eliccxrd 39753 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  ( 0 [,] +oo ) )
29 simpl 473 . . . 4  |-  ( (
ph  /\  k  e.  { ( N  +  1 ) } )  ->  ph )
30 elsni 4194 . . . . . 6  |-  ( k  e.  { ( N  +  1 ) }  ->  k  =  ( N  +  1 ) )
3130adantl 482 . . . . 5  |-  ( (
ph  /\  k  e.  { ( N  +  1 ) } )  -> 
k  =  ( N  +  1 ) )
32 simpr 477 . . . . . 6  |-  ( (
ph  /\  k  =  ( N  +  1
) )  ->  k  =  ( N  + 
1 ) )
33 peano2uz 11741 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
34 eluzfz2 12349 . . . . . . . 8  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( M ... ( N  +  1 ) ) )
351, 33, 343syl 18 . . . . . . 7  |-  ( ph  ->  ( N  +  1 )  e.  ( M ... ( N  + 
1 ) ) )
3635adantr 481 . . . . . 6  |-  ( (
ph  /\  k  =  ( N  +  1
) )  ->  ( N  +  1 )  e.  ( M ... ( N  +  1
) ) )
3732, 36eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  k  =  ( N  +  1
) )  ->  k  e.  ( M ... ( N  +  1 ) ) )
3829, 31, 37syl2anc 693 . . . 4  |-  ( (
ph  /\  k  e.  { ( N  +  1 ) } )  -> 
k  e.  ( M ... ( N  + 
1 ) ) )
3929, 38, 21syl2anc 693 . . 3  |-  ( (
ph  /\  k  e.  { ( N  +  1 ) } )  ->  A  e.  ( 0 [,] +oo ) )
406, 8, 10, 12, 28, 39sge0splitmpt 40628 . 2  |-  ( ph  ->  (Σ^ `  ( k  e.  ( ( M ... N
)  u.  { ( N  +  1 ) } )  |->  A ) )  =  ( (Σ^ `  (
k  e.  ( M ... N )  |->  A ) ) +e
(Σ^ `  ( k  e.  {
( N  +  1 ) }  |->  A ) ) ) )
41 ovex 6678 . . . . 5  |-  ( N  +  1 )  e. 
_V
4241a1i 11 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  _V )
43 id 22 . . . . 5  |-  ( ph  ->  ph )
44 eleq1 2689 . . . . . . . . 9  |-  ( k  =  ( N  + 
1 )  ->  (
k  e.  ( M ... ( N  + 
1 ) )  <->  ( N  +  1 )  e.  ( M ... ( N  +  1 ) ) ) )
4544anbi2d 740 . . . . . . . 8  |-  ( k  =  ( N  + 
1 )  ->  (
( ph  /\  k  e.  ( M ... ( N  +  1 ) ) )  <->  ( ph  /\  ( N  +  1 )  e.  ( M ... ( N  + 
1 ) ) ) ) )
46 sge0p1.3 . . . . . . . . 9  |-  ( k  =  ( N  + 
1 )  ->  A  =  B )
4746eleq1d 2686 . . . . . . . 8  |-  ( k  =  ( N  + 
1 )  ->  ( A  e.  ( 0 [,] +oo )  <->  B  e.  ( 0 [,] +oo ) ) )
4845, 47imbi12d 334 . . . . . . 7  |-  ( k  =  ( N  + 
1 )  ->  (
( ( ph  /\  k  e.  ( M ... ( N  +  1 ) ) )  ->  A  e.  ( 0 [,] +oo ) )  <-> 
( ( ph  /\  ( N  +  1
)  e.  ( M ... ( N  + 
1 ) ) )  ->  B  e.  ( 0 [,] +oo )
) ) )
4948, 21vtoclg 3266 . . . . . 6  |-  ( ( N  +  1 )  e.  _V  ->  (
( ph  /\  ( N  +  1 )  e.  ( M ... ( N  +  1
) ) )  ->  B  e.  ( 0 [,] +oo ) ) )
5041, 49ax-mp 5 . . . . 5  |-  ( (
ph  /\  ( N  +  1 )  e.  ( M ... ( N  +  1 ) ) )  ->  B  e.  ( 0 [,] +oo ) )
5143, 35, 50syl2anc 693 . . . 4  |-  ( ph  ->  B  e.  ( 0 [,] +oo ) )
5242, 51, 46sge0snmpt 40600 . . 3  |-  ( ph  ->  (Σ^ `  ( k  e.  {
( N  +  1 ) }  |->  A ) )  =  B )
5352oveq2d 6666 . 2  |-  ( ph  ->  ( (Σ^ `  ( k  e.  ( M ... N ) 
|->  A ) ) +e (Σ^ `  ( k  e.  {
( N  +  1 ) }  |->  A ) ) )  =  ( (Σ^ `  ( k  e.  ( M ... N ) 
|->  A ) ) +e B ) )
545, 40, 533eqtrd 2660 1  |-  ( ph  ->  (Σ^ `  ( k  e.  ( M ... ( N  +  1 ) ) 
|->  A ) )  =  ( (Σ^ `  ( k  e.  ( M ... N ) 
|->  A ) ) +e B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    <_ cle 10075   ZZ>=cuz 11687   +ecxad 11944   [,]cicc 12178   ...cfz 12326  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  caratheodorylem1  40740
  Copyright terms: Public domain W3C validator