Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1smat1 Structured version   Visualization version   Unicode version

Theorem 1smat1 29870
Description: The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 20389. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
1smat1.1  |-  .1.  =  ( 1r `  ( ( 1 ... N ) Mat 
R ) )
1smat1.r  |-  ( ph  ->  R  e.  Ring )
1smat1.n  |-  ( ph  ->  N  e.  NN )
1smat1.i  |-  ( ph  ->  I  e.  ( 1 ... N ) )
Assertion
Ref Expression
1smat1  |-  ( ph  ->  ( I (subMat1 `  .1.  ) I )  =  ( 1r `  (
( 1 ... ( N  -  1 ) ) Mat  R ) ) )

Proof of Theorem 1smat1
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( I (subMat1 `  .1.  ) I )  =  ( I (subMat1 `  .1.  ) I )
2 1smat1.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
32adantr 481 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  N  e.  NN )
4 1smat1.i . . . . . 6  |-  ( ph  ->  I  e.  ( 1 ... N ) )
54adantr 481 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  I  e.  ( 1 ... N ) )
6 1smat1.r . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
7 fzfi 12771 . . . . . . . 8  |-  ( 1 ... N )  e. 
Fin
8 eqid 2622 . . . . . . . . 9  |-  ( ( 1 ... N ) Mat 
R )  =  ( ( 1 ... N
) Mat  R )
9 eqid 2622 . . . . . . . . 9  |-  ( Base `  ( ( 1 ... N ) Mat  R ) )  =  ( Base `  ( ( 1 ... N ) Mat  R ) )
10 1smat1.1 . . . . . . . . 9  |-  .1.  =  ( 1r `  ( ( 1 ... N ) Mat 
R ) )
118, 9, 10mat1bas 20255 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
1 ... N )  e. 
Fin )  ->  .1.  e.  ( Base `  (
( 1 ... N
) Mat  R ) ) )
126, 7, 11sylancl 694 . . . . . . 7  |-  ( ph  ->  .1.  e.  ( Base `  ( ( 1 ... N ) Mat  R ) ) )
13 eqid 2622 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
148, 13matbas2 20227 . . . . . . . 8  |-  ( ( ( 1 ... N
)  e.  Fin  /\  R  e.  Ring )  -> 
( ( Base `  R
)  ^m  ( (
1 ... N )  X.  ( 1 ... N
) ) )  =  ( Base `  (
( 1 ... N
) Mat  R ) ) )
157, 6, 14sylancr 695 . . . . . . 7  |-  ( ph  ->  ( ( Base `  R
)  ^m  ( (
1 ... N )  X.  ( 1 ... N
) ) )  =  ( Base `  (
( 1 ... N
) Mat  R ) ) )
1612, 15eleqtrrd 2704 . . . . . 6  |-  ( ph  ->  .1.  e.  ( (
Base `  R )  ^m  ( ( 1 ... N )  X.  (
1 ... N ) ) ) )
1716adantr 481 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  .1.  e.  ( ( Base `  R )  ^m  (
( 1 ... N
)  X.  ( 1 ... N ) ) ) )
18 fz1ssnn 12372 . . . . . 6  |-  ( 1 ... ( N  - 
1 ) )  C_  NN
19 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
i  e.  ( 1 ... ( N  - 
1 ) ) )
2018, 19sseldi 3601 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
i  e.  NN )
21 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
j  e.  ( 1 ... ( N  - 
1 ) ) )
2218, 21sseldi 3601 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
j  e.  NN )
23 eqidd 2623 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  if ( i  <  I ,  i ,  ( i  +  1 ) )  =  if ( i  <  I ,  i ,  ( i  +  1 ) ) )
24 eqidd 2623 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  if ( j  <  I ,  j ,  ( j  +  1 ) )  =  if ( j  <  I ,  j ,  ( j  +  1 ) ) )
251, 3, 3, 5, 5, 17, 20, 22, 23, 24smatlem 29863 . . . 4  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( i ( I (subMat1 `  .1.  ) I ) j )  =  ( if ( i  <  I ,  i ,  ( i  +  1 ) )  .1. 
if ( j  < 
I ,  j ,  ( j  +  1 ) ) ) )
26 eqid 2622 . . . . 5  |-  ( 1r
`  R )  =  ( 1r `  R
)
27 eqid 2622 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
287a1i 11 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( 1 ... N
)  e.  Fin )
296adantr 481 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  R  e.  Ring )
30 nnuz 11723 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
3120, 30syl6eleq 2711 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
i  e.  ( ZZ>= ` 
1 ) )
32 fznatpl1 12395 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( i  +  1 )  e.  ( 1 ... N ) )
333, 19, 32syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( i  +  1 )  e.  ( 1 ... N ) )
34 peano2fzr 12354 . . . . . . . 8  |-  ( ( i  e.  ( ZZ>= ` 
1 )  /\  (
i  +  1 )  e.  ( 1 ... N ) )  -> 
i  e.  ( 1 ... N ) )
3531, 33, 34syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
i  e.  ( 1 ... N ) )
3635, 33jca 554 . . . . . 6  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( i  e.  ( 1 ... N )  /\  ( i  +  1 )  e.  ( 1 ... N ) ) )
37 eleq1 2689 . . . . . . 7  |-  ( i  =  if ( i  <  I ,  i ,  ( i  +  1 ) )  -> 
( i  e.  ( 1 ... N )  <-> 
if ( i  < 
I ,  i ,  ( i  +  1 ) )  e.  ( 1 ... N ) ) )
38 eleq1 2689 . . . . . . 7  |-  ( ( i  +  1 )  =  if ( i  <  I ,  i ,  ( i  +  1 ) )  -> 
( ( i  +  1 )  e.  ( 1 ... N )  <-> 
if ( i  < 
I ,  i ,  ( i  +  1 ) )  e.  ( 1 ... N ) ) )
3937, 38ifboth 4124 . . . . . 6  |-  ( ( i  e.  ( 1 ... N )  /\  ( i  +  1 )  e.  ( 1 ... N ) )  ->  if ( i  <  I ,  i ,  ( i  +  1 ) )  e.  ( 1 ... N
) )
4036, 39syl 17 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  if ( i  <  I ,  i ,  ( i  +  1 ) )  e.  ( 1 ... N ) )
4122, 30syl6eleq 2711 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
j  e.  ( ZZ>= ` 
1 ) )
42 fznatpl1 12395 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( j  +  1 )  e.  ( 1 ... N ) )
433, 21, 42syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( j  +  1 )  e.  ( 1 ... N ) )
44 peano2fzr 12354 . . . . . . . 8  |-  ( ( j  e.  ( ZZ>= ` 
1 )  /\  (
j  +  1 )  e.  ( 1 ... N ) )  -> 
j  e.  ( 1 ... N ) )
4541, 43, 44syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
j  e.  ( 1 ... N ) )
4645, 43jca 554 . . . . . 6  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( j  e.  ( 1 ... N )  /\  ( j  +  1 )  e.  ( 1 ... N ) ) )
47 eleq1 2689 . . . . . . 7  |-  ( j  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  -> 
( j  e.  ( 1 ... N )  <-> 
if ( j  < 
I ,  j ,  ( j  +  1 ) )  e.  ( 1 ... N ) ) )
48 eleq1 2689 . . . . . . 7  |-  ( ( j  +  1 )  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  -> 
( ( j  +  1 )  e.  ( 1 ... N )  <-> 
if ( j  < 
I ,  j ,  ( j  +  1 ) )  e.  ( 1 ... N ) ) )
4947, 48ifboth 4124 . . . . . 6  |-  ( ( j  e.  ( 1 ... N )  /\  ( j  +  1 )  e.  ( 1 ... N ) )  ->  if ( j  <  I ,  j ,  ( j  +  1 ) )  e.  ( 1 ... N
) )
5046, 49syl 17 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  if ( j  <  I ,  j ,  ( j  +  1 ) )  e.  ( 1 ... N ) )
518, 26, 27, 28, 29, 40, 50, 10mat1ov 20254 . . . 4  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( if ( i  <  I ,  i ,  ( i  +  1 ) )  .1. 
if ( j  < 
I ,  j ,  ( j  +  1 ) ) )  =  if ( if ( i  <  I ,  i ,  ( i  +  1 ) )  =  if ( j  <  I ,  j ,  ( j  +  1 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )
52 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  ( 1 ... ( N  - 
1 ) )  /\  j  e.  ( 1 ... ( N  - 
1 ) ) ) )  /\  i  < 
I )  ->  i  <  I )
5352iftrued 4094 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  ( 1 ... ( N  - 
1 ) )  /\  j  e.  ( 1 ... ( N  - 
1 ) ) ) )  /\  i  < 
I )  ->  if ( i  <  I ,  i ,  ( i  +  1 ) )  =  i )
5453eqeq1d 2624 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  ( 1 ... ( N  - 
1 ) )  /\  j  e.  ( 1 ... ( N  - 
1 ) ) ) )  /\  i  < 
I )  ->  ( if ( i  <  I ,  i ,  ( i  +  1 ) )  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <-> 
i  =  if ( j  <  I ,  j ,  ( j  +  1 ) ) ) )
55 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  j  <  I )  ->  j  <  I )
5655iftrued 4094 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  j  <  I )  ->  if ( j  <  I ,  j ,  ( j  +  1 ) )  =  j )
5756eqeq2d 2632 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  j  <  I )  ->  (
i  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <-> 
i  =  j ) )
58 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  ->  -.  j  <  I )
5958iffalsed 4097 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  ->  if ( j  <  I ,  j ,  ( j  +  1 ) )  =  ( j  +  1 ) )
6059eqeq2d 2632 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
( i  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <->  i  =  ( j  +  1 ) ) )
6120nnred 11035 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
i  e.  RR )
6261ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
i  e.  RR )
63 fz1ssnn 12372 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... N )  C_  NN
6463, 4sseldi 3601 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  I  e.  NN )
6564nnred 11035 . . . . . . . . . . . . . . 15  |-  ( ph  ->  I  e.  RR )
6665ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  ->  I  e.  RR )
6722nnred 11035 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
j  e.  RR )
6867ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
j  e.  RR )
69 1red 10055 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
1  e.  RR )
7068, 69readdcld 10069 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
( j  +  1 )  e.  RR )
7152adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
i  <  I )
7264nnzd 11481 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  I  e.  ZZ )
7372ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  ->  I  e.  ZZ )
7422nnzd 11481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
j  e.  ZZ )
7574ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
j  e.  ZZ )
7666, 68, 58nltled 10187 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  ->  I  <_  j )
77 zleltp1 11428 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  ZZ  /\  j  e.  ZZ )  ->  ( I  <_  j  <->  I  <  ( j  +  1 ) ) )
7877biimpa 501 . . . . . . . . . . . . . . 15  |-  ( ( ( I  e.  ZZ  /\  j  e.  ZZ )  /\  I  <_  j
)  ->  I  <  ( j  +  1 ) )
7973, 75, 76, 78syl21anc 1325 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  ->  I  <  ( j  +  1 ) )
8062, 66, 70, 71, 79lttrd 10198 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
i  <  ( j  +  1 ) )
8162, 80ltned 10173 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
i  =/=  ( j  +  1 ) )
8281neneqd 2799 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  ->  -.  i  =  (
j  +  1 ) )
8362, 66, 68, 71, 76ltletrd 10197 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
i  <  j )
8462, 83ltned 10173 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
i  =/=  j )
8584neneqd 2799 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  ->  -.  i  =  j
)
8682, 852falsed 366 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
( i  =  ( j  +  1 )  <-> 
i  =  j ) )
8760, 86bitrd 268 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  i  <  I )  /\  -.  j  <  I )  -> 
( i  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <->  i  =  j ) )
8857, 87pm2.61dan 832 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  ( 1 ... ( N  - 
1 ) )  /\  j  e.  ( 1 ... ( N  - 
1 ) ) ) )  /\  i  < 
I )  ->  (
i  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <-> 
i  =  j ) )
8954, 88bitrd 268 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  ( 1 ... ( N  - 
1 ) )  /\  j  e.  ( 1 ... ( N  - 
1 ) ) ) )  /\  i  < 
I )  ->  ( if ( i  <  I ,  i ,  ( i  +  1 ) )  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <-> 
i  =  j ) )
90 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  ( 1 ... ( N  - 
1 ) )  /\  j  e.  ( 1 ... ( N  - 
1 ) ) ) )  /\  -.  i  <  I )  ->  -.  i  <  I )
9190iffalsed 4097 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  ( 1 ... ( N  - 
1 ) )  /\  j  e.  ( 1 ... ( N  - 
1 ) ) ) )  /\  -.  i  <  I )  ->  if ( i  <  I ,  i ,  ( i  +  1 ) )  =  ( i  +  1 ) )
9291eqeq1d 2624 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  ( 1 ... ( N  - 
1 ) )  /\  j  e.  ( 1 ... ( N  - 
1 ) ) ) )  /\  -.  i  <  I )  ->  ( if ( i  <  I ,  i ,  ( i  +  1 ) )  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <-> 
( i  +  1 )  =  if ( j  <  I ,  j ,  ( j  +  1 ) ) ) )
93 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
j  <  I )
9493iftrued 4094 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  ->  if ( j  <  I ,  j ,  ( j  +  1 ) )  =  j )
9594eqeq2d 2632 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
( ( i  +  1 )  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <->  ( i  +  1 )  =  j ) )
9667ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
j  e.  RR )
9765ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  ->  I  e.  RR )
9861ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
i  e.  RR )
99 1red 10055 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
1  e.  RR )
10098, 99readdcld 10069 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
( i  +  1 )  e.  RR )
10172ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  ->  I  e.  ZZ )
10220nnzd 11481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
i  e.  ZZ )
103102ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
i  e.  ZZ )
10490adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  ->  -.  i  <  I )
10597, 98, 104nltled 10187 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  ->  I  <_  i )
106 zleltp1 11428 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  ZZ  /\  i  e.  ZZ )  ->  ( I  <_  i  <->  I  <  ( i  +  1 ) ) )
107106biimpa 501 . . . . . . . . . . . . . . . 16  |-  ( ( ( I  e.  ZZ  /\  i  e.  ZZ )  /\  I  <_  i
)  ->  I  <  ( i  +  1 ) )
108101, 103, 105, 107syl21anc 1325 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  ->  I  <  ( i  +  1 ) )
10996, 97, 100, 93, 108lttrd 10198 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
j  <  ( i  +  1 ) )
11096, 109ltned 10173 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
j  =/=  ( i  +  1 ) )
111110necomd 2849 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
( i  +  1 )  =/=  j )
112111neneqd 2799 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  ->  -.  ( i  +  1 )  =  j )
11396, 97, 98, 93, 105ltletrd 10197 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
j  <  i )
11496, 113ltned 10173 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
j  =/=  i )
115114necomd 2849 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
i  =/=  j )
116115neneqd 2799 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  ->  -.  i  =  j
)
117112, 1162falsed 366 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
( ( i  +  1 )  =  j  <-> 
i  =  j ) )
11895, 117bitrd 268 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  j  <  I )  -> 
( ( i  +  1 )  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <->  i  =  j ) )
119 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  ->  -.  j  <  I )
120119iffalsed 4097 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  ->  if ( j  <  I ,  j ,  ( j  +  1 ) )  =  ( j  +  1 ) )
121120eqeq2d 2632 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  ->  ( ( i  +  1 )  =  if ( j  < 
I ,  j ,  ( j  +  1 ) )  <->  ( i  +  1 )  =  ( j  +  1 ) ) )
12220nncnd 11036 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
i  e.  CC )
123122ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  /\  ( i  +  1 )  =  ( j  +  1 ) )  ->  i  e.  CC )
12422nncnd 11036 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
j  e.  CC )
125124ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  /\  ( i  +  1 )  =  ( j  +  1 ) )  ->  j  e.  CC )
126 1cnd 10056 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  /\  ( i  +  1 )  =  ( j  +  1 ) )  ->  1  e.  CC )
127 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  /\  ( i  +  1 )  =  ( j  +  1 ) )  ->  ( i  +  1 )  =  ( j  +  1 ) )
128123, 125, 126, 127addcan2ad 10242 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  /\  ( i  +  1 )  =  ( j  +  1 ) )  ->  i  =  j )
129 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  /\  i  =  j )  ->  i  =  j )
130129oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  /\  i  =  j )  ->  ( i  +  1 )  =  ( j  +  1 ) )
131128, 130impbida 877 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  ->  ( ( i  +  1 )  =  ( j  +  1 )  <->  i  =  j ) )
132121, 131bitrd 268 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  /\  -.  i  <  I )  /\  -.  j  <  I )  ->  ( ( i  +  1 )  =  if ( j  < 
I ,  j ,  ( j  +  1 ) )  <->  i  =  j ) )
133118, 132pm2.61dan 832 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  ( 1 ... ( N  - 
1 ) )  /\  j  e.  ( 1 ... ( N  - 
1 ) ) ) )  /\  -.  i  <  I )  ->  (
( i  +  1 )  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <-> 
i  =  j ) )
13492, 133bitrd 268 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  ( 1 ... ( N  - 
1 ) )  /\  j  e.  ( 1 ... ( N  - 
1 ) ) ) )  /\  -.  i  <  I )  ->  ( if ( i  <  I ,  i ,  ( i  +  1 ) )  =  if ( j  <  I ,  j ,  ( j  +  1 ) )  <-> 
i  =  j ) )
13589, 134pm2.61dan 832 . . . . . 6  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( if ( i  <  I ,  i ,  ( i  +  1 ) )  =  if ( j  < 
I ,  j ,  ( j  +  1 ) )  <->  i  =  j ) )
136135ifbid 4108 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  if ( if ( i  <  I ,  i ,  ( i  +  1 ) )  =  if ( j  < 
I ,  j ,  ( j  +  1 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) )  =  if ( i  =  j ,  ( 1r
`  R ) ,  ( 0g `  R
) ) )
137 eqid 2622 . . . . . 6  |-  ( ( 1 ... ( N  -  1 ) ) Mat 
R )  =  ( ( 1 ... ( N  -  1 ) ) Mat  R )
138 fzfid 12772 . . . . . 6  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( 1 ... ( N  -  1 ) )  e.  Fin )
139 eqid 2622 . . . . . 6  |-  ( 1r
`  ( ( 1 ... ( N  - 
1 ) ) Mat  R
) )  =  ( 1r `  ( ( 1 ... ( N  -  1 ) ) Mat 
R ) )
140137, 26, 27, 138, 29, 19, 21, 139mat1ov 20254 . . . . 5  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( i ( 1r
`  ( ( 1 ... ( N  - 
1 ) ) Mat  R
) ) j )  =  if ( i  =  j ,  ( 1r `  R ) ,  ( 0g `  R ) ) )
141136, 140eqtr4d 2659 . . . 4  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  if ( if ( i  <  I ,  i ,  ( i  +  1 ) )  =  if ( j  < 
I ,  j ,  ( j  +  1 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) )  =  ( i ( 1r
`  ( ( 1 ... ( N  - 
1 ) ) Mat  R
) ) j ) )
14225, 51, 1413eqtrd 2660 . . 3  |-  ( (
ph  /\  ( i  e.  ( 1 ... ( N  -  1 ) )  /\  j  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( i ( I (subMat1 `  .1.  ) I ) j )  =  ( i ( 1r
`  ( ( 1 ... ( N  - 
1 ) ) Mat  R
) ) j ) )
143142ralrimivva 2971 . 2  |-  ( ph  ->  A. i  e.  ( 1 ... ( N  -  1 ) ) A. j  e.  ( 1 ... ( N  -  1 ) ) ( i ( I (subMat1 `  .1.  ) I ) j )  =  ( i ( 1r
`  ( ( 1 ... ( N  - 
1 ) ) Mat  R
) ) j ) )
1441, 2, 2, 4, 4, 16smatrcl 29862 . . . 4  |-  ( ph  ->  ( I (subMat1 `  .1.  ) I )  e.  ( ( Base `  R
)  ^m  ( (
1 ... ( N  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) ) )
145 elmapfn 7880 . . . 4  |-  ( ( I (subMat1 `  .1.  ) I )  e.  ( ( Base `  R
)  ^m  ( (
1 ... ( N  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( I (subMat1 `  .1.  ) I )  Fn  ( ( 1 ... ( N  -  1 ) )  X.  (
1 ... ( N  - 
1 ) ) ) )
146144, 145syl 17 . . 3  |-  ( ph  ->  ( I (subMat1 `  .1.  ) I )  Fn  ( ( 1 ... ( N  -  1 ) )  X.  (
1 ... ( N  - 
1 ) ) ) )
147 fzfi 12771 . . . . . 6  |-  ( 1 ... ( N  - 
1 ) )  e. 
Fin
148 eqid 2622 . . . . . . 7  |-  ( Base `  ( ( 1 ... ( N  -  1 ) ) Mat  R ) )  =  ( Base `  ( ( 1 ... ( N  -  1 ) ) Mat  R ) )
149137, 148, 139mat1bas 20255 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
1 ... ( N  - 
1 ) )  e. 
Fin )  ->  ( 1r `  ( ( 1 ... ( N  - 
1 ) ) Mat  R
) )  e.  (
Base `  ( (
1 ... ( N  - 
1 ) ) Mat  R
) ) )
1506, 147, 149sylancl 694 . . . . 5  |-  ( ph  ->  ( 1r `  (
( 1 ... ( N  -  1 ) ) Mat  R ) )  e.  ( Base `  (
( 1 ... ( N  -  1 ) ) Mat  R ) ) )
151137, 13matbas2 20227 . . . . . 6  |-  ( ( ( 1 ... ( N  -  1 ) )  e.  Fin  /\  R  e.  Ring )  -> 
( ( Base `  R
)  ^m  ( (
1 ... ( N  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) )  =  ( Base `  (
( 1 ... ( N  -  1 ) ) Mat  R ) ) )
152147, 6, 151sylancr 695 . . . . 5  |-  ( ph  ->  ( ( Base `  R
)  ^m  ( (
1 ... ( N  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) )  =  ( Base `  (
( 1 ... ( N  -  1 ) ) Mat  R ) ) )
153150, 152eleqtrrd 2704 . . . 4  |-  ( ph  ->  ( 1r `  (
( 1 ... ( N  -  1 ) ) Mat  R ) )  e.  ( ( Base `  R )  ^m  (
( 1 ... ( N  -  1 ) )  X.  ( 1 ... ( N  - 
1 ) ) ) ) )
154 elmapfn 7880 . . . 4  |-  ( ( 1r `  ( ( 1 ... ( N  -  1 ) ) Mat 
R ) )  e.  ( ( Base `  R
)  ^m  ( (
1 ... ( N  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( 1r `  (
( 1 ... ( N  -  1 ) ) Mat  R ) )  Fn  ( ( 1 ... ( N  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) )
155153, 154syl 17 . . 3  |-  ( ph  ->  ( 1r `  (
( 1 ... ( N  -  1 ) ) Mat  R ) )  Fn  ( ( 1 ... ( N  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) )
156 eqfnov2 6767 . . 3  |-  ( ( ( I (subMat1 `  .1.  ) I )  Fn  ( ( 1 ... ( N  -  1 ) )  X.  (
1 ... ( N  - 
1 ) ) )  /\  ( 1r `  ( ( 1 ... ( N  -  1 ) ) Mat  R ) )  Fn  ( ( 1 ... ( N  -  1 ) )  X.  ( 1 ... ( N  -  1 ) ) ) )  ->  ( ( I (subMat1 `  .1.  ) I )  =  ( 1r
`  ( ( 1 ... ( N  - 
1 ) ) Mat  R
) )  <->  A. i  e.  ( 1 ... ( N  -  1 ) ) A. j  e.  ( 1 ... ( N  -  1 ) ) ( i ( I (subMat1 `  .1.  ) I ) j )  =  ( i ( 1r `  (
( 1 ... ( N  -  1 ) ) Mat  R ) ) j ) ) )
157146, 155, 156syl2anc 693 . 2  |-  ( ph  ->  ( ( I (subMat1 `  .1.  ) I )  =  ( 1r `  ( ( 1 ... ( N  -  1 ) ) Mat  R ) )  <->  A. i  e.  ( 1 ... ( N  -  1 ) ) A. j  e.  ( 1 ... ( N  -  1 ) ) ( i ( I (subMat1 `  .1.  ) I ) j )  =  ( i ( 1r
`  ( ( 1 ... ( N  - 
1 ) ) Mat  R
) ) j ) ) )
158143, 157mpbird 247 1  |-  ( ph  ->  ( I (subMat1 `  .1.  ) I )  =  ( 1r `  (
( 1 ... ( N  -  1 ) ) Mat  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ifcif 4086   class class class wbr 4653    X. cxp 5112    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   Basecbs 15857   0gc0g 16100   1rcur 18501   Ringcrg 18547   Mat cmat 20213  subMat1csmat 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-smat 29860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator