MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanval3 Structured version   Visualization version   Unicode version

Theorem tanval3 14864
Description: Express the tangent function directly in terms of  exp. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanval3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( tan `  A
)  =  ( ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  -  1 )  /  ( _i  x.  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) ) ) )

Proof of Theorem tanval3
StepHypRef Expression
1 ax-icn 9995 . . . . . 6  |-  _i  e.  CC
2 simpl 473 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  ->  A  e.  CC )
3 mulcl 10020 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
41, 2, 3sylancr 695 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( _i  x.  A
)  e.  CC )
5 efcl 14813 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
64, 5syl 17 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( exp `  (
_i  x.  A )
)  e.  CC )
7 negicn 10282 . . . . . 6  |-  -u _i  e.  CC
8 mulcl 10020 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
97, 2, 8sylancr 695 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( -u _i  x.  A
)  e.  CC )
10 efcl 14813 . . . . 5  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
119, 10syl 17 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( exp `  ( -u _i  x.  A ) )  e.  CC )
126, 11subcld 10392 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
136, 11addcld 10059 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
14 mulcl 10020 . . . 4  |-  ( ( _i  e.  CC  /\  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )  -> 
( _i  x.  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) )  e.  CC )
151, 13, 14sylancr 695 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( _i  x.  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) )  e.  CC )
16 2z 11409 . . . . . . . . . . 11  |-  2  e.  ZZ
17 efexp 14831 . . . . . . . . . . 11  |-  ( ( ( _i  x.  A
)  e.  CC  /\  2  e.  ZZ )  ->  ( exp `  (
2  x.  ( _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A ) ) ^ 2 ) )
184, 16, 17sylancl 694 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( exp `  (
2  x.  ( _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A ) ) ^ 2 ) )
196sqvald 13005 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
_i  x.  A )
) ^ 2 )  =  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( _i  x.  A ) ) ) )
2018, 19eqtrd 2656 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( exp `  (
2  x.  ( _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) ) )
21 mulneg1 10466 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  -u ( _i  x.  A
) )
221, 2, 21sylancr 695 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( -u _i  x.  A
)  =  -u (
_i  x.  A )
)
2322fveq2d 6195 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( exp `  ( -u _i  x.  A ) )  =  ( exp `  -u ( _i  x.  A ) ) )
2423oveq2d 6666 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  -u ( _i  x.  A ) ) ) )
25 efcan 14826 . . . . . . . . . . 11  |-  ( ( _i  x.  A )  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  -u ( _i  x.  A ) ) )  =  1 )
264, 25syl 17 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
_i  x.  A )
)  x.  ( exp `  -u ( _i  x.  A ) ) )  =  1 )
2724, 26eqtr2d 2657 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
1  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  A ) ) ) )
2820, 27oveq12d 6668 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =  ( ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) )  +  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
296, 6, 11adddid 10064 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
3028, 29eqtr4d 2659 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =  ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) )
3130oveq2d 6666 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) )  =  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
321a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  ->  _i  e.  CC )
3332, 6, 13mul12d 10245 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( _i  x.  (
( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) )  =  ( ( exp `  ( _i  x.  A
) )  x.  (
_i  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
3431, 33eqtrd 2656 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
35 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
36 mulcl 10020 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 2  x.  ( _i  x.  A
) )  e.  CC )
3735, 4, 36sylancr 695 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( 2  x.  (
_i  x.  A )
)  e.  CC )
38 efcl 14813 . . . . . . . 8  |-  ( ( 2  x.  ( _i  x.  A ) )  e.  CC  ->  ( exp `  ( 2  x.  ( _i  x.  A
) ) )  e.  CC )
3937, 38syl 17 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( exp `  (
2  x.  ( _i  x.  A ) ) )  e.  CC )
40 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
41 addcl 10018 . . . . . . 7  |-  ( ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  e.  CC )
4239, 40, 41sylancl 694 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  e.  CC )
43 ine0 10465 . . . . . . 7  |-  _i  =/=  0
4443a1i 11 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  ->  _i  =/=  0 )
45 simpr 477 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )
4632, 42, 44, 45mulne0d 10679 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) )  =/=  0 )
4734, 46eqnetrrd 2862 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) )  =/=  0 )
486, 15, 47mulne0bbd 10683 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( _i  x.  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) )  =/=  0 )
49 efne0 14827 . . . 4  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =/=  0 )
504, 49syl 17 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( exp `  (
_i  x.  A )
)  =/=  0 )
5112, 15, 6, 48, 50divcan5d 10827 . 2  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  ( ( exp `  ( _i  x.  A ) )  x.  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
5220, 27oveq12d 6668 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
2  x.  ( _i  x.  A ) ) )  -  1 )  =  ( ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) )  -  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
536, 6, 11subdid 10486 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( _i  x.  A ) ) )  -  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
5452, 53eqtr4d 2659 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
2  x.  ( _i  x.  A ) ) )  -  1 )  =  ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) ) )
5554, 34oveq12d 6668 . 2  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( ( exp `  ( 2  x.  (
_i  x.  A )
) )  -  1 )  /  ( _i  x.  ( ( exp `  ( 2  x.  (
_i  x.  A )
) )  +  1 ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  ( ( exp `  ( _i  x.  A ) )  x.  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) ) )
56 cosval 14853 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
5756adantr 481 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( cos `  A
)  =  ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
58 2cnd 11093 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
2  e.  CC )
5932, 13, 48mulne0bbd 10683 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  =/=  0 )
60 2ne0 11113 . . . . . 6  |-  2  =/=  0
6160a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
2  =/=  0 )
6213, 58, 59, 61divne0d 10817 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =/=  0 )
6357, 62eqnetrd 2861 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( cos `  A
)  =/=  0 )
64 tanval2 14863 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  =  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
6563, 64syldan 487 . 2  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( tan `  A
)  =  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
6651, 55, 653eqtr4rd 2667 1  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =/=  0 )  -> 
( tan `  A
)  =  ( ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  -  1 )  /  ( _i  x.  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   ZZcz 11377   ^cexp 12860   expce 14792   cosccos 14795   tanctan 14796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802
This theorem is referenced by:  tanarg  24365  tanatan  24646
  Copyright terms: Public domain W3C validator