MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanatan Structured version   Visualization version   Unicode version

Theorem tanatan 24646
Description: The arctangent function is an inverse to  tan. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
tanatan  |-  ( A  e.  dom arctan  ->  ( tan `  (arctan `  A )
)  =  A )

Proof of Theorem tanatan
StepHypRef Expression
1 atancl 24608 . . 3  |-  ( A  e.  dom arctan  ->  (arctan `  A )  e.  CC )
2 2efiatan 24645 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  1 ) )
32oveq1d 6665 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  +  1 )  =  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  1 )  +  1 ) )
4 2mulicn 11255 . . . . . . . 8  |-  ( 2  x.  _i )  e.  CC
54a1i 11 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 2  x.  _i )  e.  CC )
6 atandm 24603 . . . . . . . . 9  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )
76simp1bi 1076 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  A  e.  CC )
8 ax-icn 9995 . . . . . . . 8  |-  _i  e.  CC
9 addcl 10018 . . . . . . . 8  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( A  +  _i )  e.  CC )
107, 8, 9sylancl 694 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( A  +  _i )  e.  CC )
11 subneg 10330 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( A  -  -u _i )  =  ( A  +  _i ) )
127, 8, 11sylancl 694 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( A  -  -u _i )  =  ( A  +  _i ) )
136simp2bi 1077 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  A  =/=  -u _i )
148negcli 10349 . . . . . . . . . 10  |-  -u _i  e.  CC
15 subeq0 10307 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u _i  e.  CC )  ->  ( ( A  -  -u _i )  =  0  <->  A  =  -u _i ) )
1615necon3bid 2838 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u _i  e.  CC )  ->  ( ( A  -  -u _i )  =/=  0  <->  A  =/=  -u _i ) )
177, 14, 16sylancl 694 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( ( A  -  -u _i )  =/=  0  <->  A  =/=  -u _i ) )
1813, 17mpbird 247 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( A  -  -u _i )  =/=  0 )
1912, 18eqnetrrd 2862 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( A  +  _i )  =/=  0 )
205, 10, 19divcld 10801 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  /  ( A  +  _i ) )  e.  CC )
21 ax-1cn 9994 . . . . . 6  |-  1  e.  CC
22 npcan 10290 . . . . . 6  |-  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  1 )  +  1 )  =  ( ( 2  x.  _i )  / 
( A  +  _i ) ) )
2320, 21, 22sylancl 694 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  1 )  +  1 )  =  ( ( 2  x.  _i )  /  ( A  +  _i )
) )
243, 23eqtrd 2656 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  +  1 )  =  ( ( 2  x.  _i )  /  ( A  +  _i ) ) )
25 2muline0 11256 . . . . . 6  |-  ( 2  x.  _i )  =/=  0
2625a1i 11 . . . . 5  |-  ( A  e.  dom arctan  ->  ( 2  x.  _i )  =/=  0 )
275, 10, 26, 19divne0d 10817 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  /  ( A  +  _i ) )  =/=  0
)
2824, 27eqnetrd 2861 . . 3  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  +  1 )  =/=  0 )
29 tanval3 14864 . . 3  |-  ( ( (arctan `  A )  e.  CC  /\  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  +  1 )  =/=  0 )  ->  ( tan `  (arctan `  A ) )  =  ( ( ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  -  1 )  / 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  +  1 ) ) ) )
301, 28, 29syl2anc 693 . 2  |-  ( A  e.  dom arctan  ->  ( tan `  (arctan `  A )
)  =  ( ( ( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  -  1 )  / 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  +  1 ) ) ) )
312oveq1d 6665 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  -  1 )  =  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  1 )  -  1 ) )
3221a1i 11 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  1  e.  CC )
3320, 32, 32subsub4d 10423 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  1 )  -  1 )  =  ( ( ( 2  x.  _i )  / 
( A  +  _i ) )  -  (
1  +  1 ) ) )
34 df-2 11079 . . . . . . . 8  |-  2  =  ( 1  +  1 )
3534oveq2i 6661 . . . . . . 7  |-  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  2 )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  (
1  +  1 ) )
3633, 35syl6eqr 2674 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  1 )  -  1 )  =  ( ( ( 2  x.  _i )  / 
( A  +  _i ) )  -  2 ) )
3731, 36eqtrd 2656 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  -  1 )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  2 ) )
38 2cn 11091 . . . . . . . 8  |-  2  e.  CC
39 mulcl 10020 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( A  +  _i )  e.  CC )  ->  ( 2  x.  ( A  +  _i )
)  e.  CC )
4038, 10, 39sylancr 695 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( A  +  _i ) )  e.  CC )
415, 40, 10, 19divsubdird 10840 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  -  ( 2  x.  ( A  +  _i ) ) )  / 
( A  +  _i ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  ( ( 2  x.  ( A  +  _i ) )  /  ( A  +  _i ) ) ) )
42 mulneg12 10468 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( -u 2  x.  A )  =  ( 2  x.  -u A
) )
4338, 7, 42sylancr 695 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( -u
2  x.  A )  =  ( 2  x.  -u A ) )
44 negsub 10329 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  +  -u A )  =  ( _i  -  A ) )
458, 7, 44sylancr 695 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( _i  +  -u A )  =  ( _i  -  A
) )
4645oveq1d 6665 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( ( _i  +  -u A
)  -  _i )  =  ( ( _i 
-  A )  -  _i ) )
477negcld 10379 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  -u A  e.  CC )
48 pncan2 10288 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  -u A  e.  CC )  ->  ( ( _i  +  -u A )  -  _i )  =  -u A
)
498, 47, 48sylancr 695 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( ( _i  +  -u A
)  -  _i )  =  -u A )
508a1i 11 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  _i  e.  CC )
5150, 7, 50subsub4d 10423 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( ( _i  -  A )  -  _i )  =  ( _i  -  ( A  +  _i )
) )
5246, 49, 513eqtr3rd 2665 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( _i 
-  ( A  +  _i ) )  =  -u A )
5352oveq2d 6666 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( _i  -  ( A  +  _i ) ) )  =  ( 2  x.  -u A
) )
5438a1i 11 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  2  e.  CC )
5554, 50, 10subdid 10486 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( _i  -  ( A  +  _i ) ) )  =  ( ( 2  x.  _i )  -  (
2  x.  ( A  +  _i ) ) ) )
5643, 53, 553eqtr2rd 2663 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  -  ( 2  x.  ( A  +  _i ) ) )  =  ( -u 2  x.  A ) )
5756oveq1d 6665 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  -  ( 2  x.  ( A  +  _i ) ) )  / 
( A  +  _i ) )  =  ( ( -u 2  x.  A )  /  ( A  +  _i )
) )
5854, 10, 19divcan4d 10807 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( A  +  _i ) )  /  ( A  +  _i ) )  =  2 )
5958oveq2d 6666 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  (
( 2  x.  ( A  +  _i )
)  /  ( A  +  _i ) ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  2 ) )
6041, 57, 593eqtr3d 2664 . . . . 5  |-  ( A  e.  dom arctan  ->  ( (
-u 2  x.  A
)  /  ( A  +  _i ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  2 ) )
6137, 60eqtr4d 2659 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( 2  x.  ( _i  x.  (arctan `  A ) ) ) )  -  1 )  =  ( (
-u 2  x.  A
)  /  ( A  +  _i ) ) )
6224oveq2d 6666 . . . . 5  |-  ( A  e.  dom arctan  ->  ( _i  x.  ( ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  +  1 ) )  =  ( _i  x.  ( ( 2  x.  _i )  /  ( A  +  _i )
) ) )
638, 38, 8mul12i 10231 . . . . . . . 8  |-  ( _i  x.  ( 2  x.  _i ) )  =  ( 2  x.  (
_i  x.  _i )
)
64 ixi 10656 . . . . . . . . 9  |-  ( _i  x.  _i )  = 
-u 1
6564oveq2i 6661 . . . . . . . 8  |-  ( 2  x.  ( _i  x.  _i ) )  =  ( 2  x.  -u 1
)
6621negcli 10349 . . . . . . . . 9  |-  -u 1  e.  CC
6738mulm1i 10475 . . . . . . . . 9  |-  ( -u
1  x.  2 )  =  -u 2
6866, 38, 67mulcomli 10047 . . . . . . . 8  |-  ( 2  x.  -u 1 )  = 
-u 2
6963, 65, 683eqtri 2648 . . . . . . 7  |-  ( _i  x.  ( 2  x.  _i ) )  = 
-u 2
7069oveq1i 6660 . . . . . 6  |-  ( ( _i  x.  ( 2  x.  _i ) )  /  ( A  +  _i ) )  =  (
-u 2  /  ( A  +  _i )
)
7150, 5, 10, 19divassd 10836 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  ( 2  x.  _i ) )  /  ( A  +  _i ) )  =  ( _i  x.  ( ( 2  x.  _i )  /  ( A  +  _i ) ) ) )
7270, 71syl5eqr 2670 . . . . 5  |-  ( A  e.  dom arctan  ->  ( -u
2  /  ( A  +  _i ) )  =  ( _i  x.  ( ( 2  x.  _i )  /  ( A  +  _i )
) ) )
7362, 72eqtr4d 2659 . . . 4  |-  ( A  e.  dom arctan  ->  ( _i  x.  ( ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  +  1 ) )  =  ( -u 2  /  ( A  +  _i ) ) )
7461, 73oveq12d 6668 . . 3  |-  ( A  e.  dom arctan  ->  ( ( ( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  -  1 )  / 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  +  1 ) ) )  =  ( ( ( -u 2  x.  A )  /  ( A  +  _i )
)  /  ( -u
2  /  ( A  +  _i ) ) ) )
7538negcli 10349 . . . . . 6  |-  -u 2  e.  CC
76 mulcl 10020 . . . . . 6  |-  ( (
-u 2  e.  CC  /\  A  e.  CC )  ->  ( -u 2  x.  A )  e.  CC )
7775, 7, 76sylancr 695 . . . . 5  |-  ( A  e.  dom arctan  ->  ( -u
2  x.  A )  e.  CC )
7875a1i 11 . . . . 5  |-  ( A  e.  dom arctan  ->  -u 2  e.  CC )
79 2ne0 11113 . . . . . . 7  |-  2  =/=  0
8038, 79negne0i 10356 . . . . . 6  |-  -u 2  =/=  0
8180a1i 11 . . . . 5  |-  ( A  e.  dom arctan  ->  -u 2  =/=  0 )
8277, 78, 10, 81, 19divcan7d 10829 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( ( -u 2  x.  A )  /  ( A  +  _i )
)  /  ( -u
2  /  ( A  +  _i ) ) )  =  ( (
-u 2  x.  A
)  /  -u 2
) )
837, 78, 81divcan3d 10806 . . . 4  |-  ( A  e.  dom arctan  ->  ( (
-u 2  x.  A
)  /  -u 2
)  =  A )
8482, 83eqtrd 2656 . . 3  |-  ( A  e.  dom arctan  ->  ( ( ( -u 2  x.  A )  /  ( A  +  _i )
)  /  ( -u
2  /  ( A  +  _i ) ) )  =  A )
8574, 84eqtrd 2656 . 2  |-  ( A  e.  dom arctan  ->  ( ( ( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  -  1 )  / 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  (arctan `  A
) ) ) )  +  1 ) ) )  =  A )
8630, 85eqtrd 2656 1  |-  ( A  e.  dom arctan  ->  ( tan `  (arctan `  A )
)  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   dom cdm 5114   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   expce 14792   tanctan 14796  arctancatan 24591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-atan 24594
This theorem is referenced by:  atantanb  24651  atanord  24654
  Copyright terms: Public domain W3C validator