Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachltOLD Structured version   Visualization version   Unicode version

Theorem tgoldbachltOLD 41710
Description: Obsolete version of tgoldbachlt 41704 as of 9-Sep-2021. (Contributed by AV, 4-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tgoldbachltOLD  |-  E. m  e.  NN  ( ( 8  x.  ( 10 ^; 3 0 ) )  <  m  /\  A. n  e. Odd  (
( 7  <  n  /\  n  <  m )  ->  n  e. GoldbachOdd  ) )
Distinct variable group:    m, n

Proof of Theorem tgoldbachltOLD
StepHypRef Expression
1 8nn0 11315 . . . 4  |-  8  e.  NN0
2 8nn 11191 . . . 4  |-  8  e.  NN
31, 2decnncl 11518 . . 3  |- ; 8 8  e.  NN
4 10nnOLD 11193 . . . 4  |-  10  e.  NN
5 2nn0 11309 . . . . 5  |-  2  e.  NN0
6 9nn0 11316 . . . . 5  |-  9  e.  NN0
75, 6deccl 11512 . . . 4  |- ; 2 9  e.  NN0
8 nnexpcl 12873 . . . 4  |-  ( ( 10  e.  NN  /\ ; 2 9  e.  NN0 )  -> 
( 10 ^; 2 9 )  e.  NN )
94, 7, 8mp2an 708 . . 3  |-  ( 10
^; 2 9 )  e.  NN
103, 9nnmulcli 11044 . 2  |-  (; 8 8  x.  ( 10 ^; 2 9 ) )  e.  NN
11 id 22 . . 3  |-  ( (; 8
8  x.  ( 10
^; 2 9 ) )  e.  NN  ->  (; 8 8  x.  ( 10 ^; 2 9 ) )  e.  NN )
12 breq2 4657 . . . . 5  |-  ( m  =  (; 8 8  x.  ( 10 ^; 2 9 ) )  ->  ( ( 8  x.  ( 10 ^; 3 0 ) )  <  m  <->  ( 8  x.  ( 10
^; 3 0 ) )  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) ) )
13 breq2 4657 . . . . . . . 8  |-  ( m  =  (; 8 8  x.  ( 10 ^; 2 9 ) )  ->  ( n  < 
m  <->  n  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) ) )
1413anbi2d 740 . . . . . . 7  |-  ( m  =  (; 8 8  x.  ( 10 ^; 2 9 ) )  ->  ( ( 7  <  n  /\  n  <  m )  <->  ( 7  <  n  /\  n  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) ) ) )
1514imbi1d 331 . . . . . 6  |-  ( m  =  (; 8 8  x.  ( 10 ^; 2 9 ) )  ->  ( ( ( 7  <  n  /\  n  <  m )  ->  n  e. GoldbachOdd  )  <->  ( (
7  <  n  /\  n  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) )  ->  n  e. GoldbachOdd  ) ) )
1615ralbidv 2986 . . . . 5  |-  ( m  =  (; 8 8  x.  ( 10 ^; 2 9 ) )  ->  ( A. n  e. Odd  ( ( 7  < 
n  /\  n  <  m )  ->  n  e. GoldbachOdd  )  <->  A. n  e. Odd  ( ( 7  <  n  /\  n  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) )  ->  n  e. GoldbachOdd  ) ) )
1712, 16anbi12d 747 . . . 4  |-  ( m  =  (; 8 8  x.  ( 10 ^; 2 9 ) )  ->  ( ( ( 8  x.  ( 10
^; 3 0 ) )  <  m  /\  A. n  e. Odd  ( (
7  <  n  /\  n  <  m )  ->  n  e. GoldbachOdd  ) )  <->  ( (
8  x.  ( 10
^; 3 0 ) )  <  (; 8 8  x.  ( 10 ^; 2 9 ) )  /\  A. n  e. Odd 
( ( 7  < 
n  /\  n  <  (; 8
8  x.  ( 10
^; 2 9 ) ) )  ->  n  e. GoldbachOdd  ) ) ) )
1817adantl 482 . . 3  |-  ( ( (; 8 8  x.  ( 10 ^; 2 9 ) )  e.  NN  /\  m  =  (; 8 8  x.  ( 10 ^; 2 9 ) ) )  ->  ( (
( 8  x.  ( 10 ^; 3 0 ) )  <  m  /\  A. n  e. Odd  ( (
7  <  n  /\  n  <  m )  ->  n  e. GoldbachOdd  ) )  <->  ( (
8  x.  ( 10
^; 3 0 ) )  <  (; 8 8  x.  ( 10 ^; 2 9 ) )  /\  A. n  e. Odd 
( ( 7  < 
n  /\  n  <  (; 8
8  x.  ( 10
^; 2 9 ) ) )  ->  n  e. GoldbachOdd  ) ) ) )
19 simplr 792 . . . . . . 7  |-  ( ( ( (; 8 8  x.  ( 10 ^; 2 9 ) )  e.  NN  /\  n  e. Odd  )  /\  ( 7  <  n  /\  n  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) ) )  ->  n  e. Odd  )
20 simprl 794 . . . . . . 7  |-  ( ( ( (; 8 8  x.  ( 10 ^; 2 9 ) )  e.  NN  /\  n  e. Odd  )  /\  ( 7  <  n  /\  n  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) ) )  ->  7  <  n )
21 simprr 796 . . . . . . 7  |-  ( ( ( (; 8 8  x.  ( 10 ^; 2 9 ) )  e.  NN  /\  n  e. Odd  )  /\  ( 7  <  n  /\  n  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) ) )  ->  n  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) )
22 tgblthelfgottOLD 41709 . . . . . . 7  |-  ( ( n  e. Odd  /\  7  <  n  /\  n  < 
(; 8 8  x.  ( 10 ^; 2 9 ) ) )  ->  n  e. GoldbachOdd  )
2319, 20, 21, 22syl3anc 1326 . . . . . 6  |-  ( ( ( (; 8 8  x.  ( 10 ^; 2 9 ) )  e.  NN  /\  n  e. Odd  )  /\  ( 7  <  n  /\  n  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) ) )  ->  n  e. GoldbachOdd  )
2423ex 450 . . . . 5  |-  ( ( (; 8 8  x.  ( 10 ^; 2 9 ) )  e.  NN  /\  n  e. Odd  )  ->  ( (
7  <  n  /\  n  <  (; 8 8  x.  ( 10 ^; 2 9 ) ) )  ->  n  e. GoldbachOdd  ) )
2524ralrimiva 2966 . . . 4  |-  ( (; 8
8  x.  ( 10
^; 2 9 ) )  e.  NN  ->  A. n  e. Odd  ( ( 7  < 
n  /\  n  <  (; 8
8  x.  ( 10
^; 2 9 ) ) )  ->  n  e. GoldbachOdd  ) )
262, 9nnmulcli 11044 . . . . . . 7  |-  ( 8  x.  ( 10 ^; 2 9 ) )  e.  NN
2726nngt0i 11054 . . . . . 6  |-  0  <  ( 8  x.  ( 10 ^; 2 9 ) )
2826nnrei 11029 . . . . . . 7  |-  ( 8  x.  ( 10 ^; 2 9 ) )  e.  RR
29 3nn0 11310 . . . . . . . . . . 11  |-  3  e.  NN0
30 0nn0 11307 . . . . . . . . . . 11  |-  0  e.  NN0
3129, 30deccl 11512 . . . . . . . . . 10  |- ; 3 0  e.  NN0
32 nnexpcl 12873 . . . . . . . . . 10  |-  ( ( 10  e.  NN  /\ ; 3 0  e.  NN0 )  -> 
( 10 ^; 3 0 )  e.  NN )
334, 31, 32mp2an 708 . . . . . . . . 9  |-  ( 10
^; 3 0 )  e.  NN
342, 33nnmulcli 11044 . . . . . . . 8  |-  ( 8  x.  ( 10 ^; 3 0 ) )  e.  NN
3534nnrei 11029 . . . . . . 7  |-  ( 8  x.  ( 10 ^; 3 0 ) )  e.  RR
3628, 35ltaddposi 10577 . . . . . 6  |-  ( 0  <  ( 8  x.  ( 10 ^; 2 9 ) )  <-> 
( 8  x.  ( 10 ^; 3 0 ) )  <  ( ( 8  x.  ( 10 ^; 3 0 ) )  +  ( 8  x.  ( 10
^; 2 9 ) ) ) )
3727, 36mpbi 220 . . . . 5  |-  ( 8  x.  ( 10 ^; 3 0 ) )  <  (
( 8  x.  ( 10 ^; 3 0 ) )  +  ( 8  x.  ( 10 ^; 2 9 ) ) )
38 dfdecOLD 11495 . . . . . . 7  |- ; 8 8  =  ( ( 10  x.  8 )  +  8 )
3938oveq1i 6660 . . . . . 6  |-  (; 8 8  x.  ( 10 ^; 2 9 ) )  =  ( ( ( 10  x.  8 )  +  8 )  x.  ( 10 ^; 2 9 ) )
404, 2nnmulcli 11044 . . . . . . . 8  |-  ( 10  x.  8 )  e.  NN
4140nncni 11030 . . . . . . 7  |-  ( 10  x.  8 )  e.  CC
42 8cn 11106 . . . . . . 7  |-  8  e.  CC
439nncni 11030 . . . . . . 7  |-  ( 10
^; 2 9 )  e.  CC
4441, 42, 43adddiri 10051 . . . . . 6  |-  ( ( ( 10  x.  8 )  +  8 )  x.  ( 10 ^; 2 9 ) )  =  ( ( ( 10  x.  8 )  x.  ( 10 ^; 2 9 ) )  +  ( 8  x.  ( 10 ^; 2 9 ) ) )
4541, 43mulcomi 10046 . . . . . . . . 9  |-  ( ( 10  x.  8 )  x.  ( 10 ^; 2 9 ) )  =  ( ( 10 ^; 2 9 )  x.  ( 10  x.  8 ) )
464nncni 11030 . . . . . . . . . 10  |-  10  e.  CC
4743, 46, 42mulassi 10049 . . . . . . . . 9  |-  ( ( ( 10 ^; 2 9 )  x.  10 )  x.  8 )  =  ( ( 10 ^; 2 9 )  x.  ( 10  x.  8 ) )
48 nncn 11028 . . . . . . . . . . . . 13  |-  ( 10  e.  NN  ->  10  e.  CC )
497a1i 11 . . . . . . . . . . . . 13  |-  ( 10  e.  NN  -> ; 2 9  e.  NN0 )
5048, 49expp1d 13009 . . . . . . . . . . . 12  |-  ( 10  e.  NN  ->  ( 10 ^ (; 2 9  +  1 ) )  =  ( ( 10 ^; 2 9 )  x.  10 ) )
514, 50ax-mp 5 . . . . . . . . . . 11  |-  ( 10
^ (; 2 9  +  1 ) )  =  ( ( 10 ^; 2 9 )  x.  10 )
5251eqcomi 2631 . . . . . . . . . 10  |-  ( ( 10 ^; 2 9 )  x.  10 )  =  ( 10 ^ (; 2 9  +  1 ) )
5352oveq1i 6660 . . . . . . . . 9  |-  ( ( ( 10 ^; 2 9 )  x.  10 )  x.  8 )  =  ( ( 10 ^ (; 2 9  +  1 ) )  x.  8 )
5445, 47, 533eqtr2i 2650 . . . . . . . 8  |-  ( ( 10  x.  8 )  x.  ( 10 ^; 2 9 ) )  =  ( ( 10 ^ (; 2 9  +  1 ) )  x.  8 )
5554oveq1i 6660 . . . . . . 7  |-  ( ( ( 10  x.  8 )  x.  ( 10
^; 2 9 ) )  +  ( 8  x.  ( 10 ^; 2 9 ) ) )  =  ( ( ( 10 ^ (; 2 9  +  1 ) )  x.  8 )  +  ( 8  x.  ( 10 ^; 2 9 ) ) )
56 2p1e3 11151 . . . . . . . . . . 11  |-  ( 2  +  1 )  =  3
57 eqid 2622 . . . . . . . . . . 11  |- ; 2 9  = ; 2 9
585, 56, 57decsucc 11550 . . . . . . . . . 10  |-  (; 2 9  +  1 )  = ; 3 0
5958oveq2i 6661 . . . . . . . . 9  |-  ( 10
^ (; 2 9  +  1 ) )  =  ( 10 ^; 3 0 )
6059oveq1i 6660 . . . . . . . 8  |-  ( ( 10 ^ (; 2 9  +  1 ) )  x.  8 )  =  ( ( 10 ^; 3 0 )  x.  8 )
6160oveq1i 6660 . . . . . . 7  |-  ( ( ( 10 ^ (; 2 9  +  1 ) )  x.  8 )  +  ( 8  x.  ( 10 ^; 2 9 ) ) )  =  ( ( ( 10 ^; 3 0 )  x.  8 )  +  ( 8  x.  ( 10
^; 2 9 ) ) )
6233nncni 11030 . . . . . . . 8  |-  ( 10
^; 3 0 )  e.  CC
63 mulcom 10022 . . . . . . . . 9  |-  ( ( ( 10 ^; 3 0 )  e.  CC  /\  8  e.  CC )  ->  (
( 10 ^; 3 0 )  x.  8 )  =  ( 8  x.  ( 10
^; 3 0 ) ) )
6463oveq1d 6665 . . . . . . . 8  |-  ( ( ( 10 ^; 3 0 )  e.  CC  /\  8  e.  CC )  ->  (
( ( 10 ^; 3 0 )  x.  8 )  +  ( 8  x.  ( 10 ^; 2 9 ) ) )  =  ( ( 8  x.  ( 10
^; 3 0 ) )  +  ( 8  x.  ( 10 ^; 2 9 ) ) ) )
6562, 42, 64mp2an 708 . . . . . . 7  |-  ( ( ( 10 ^; 3 0 )  x.  8 )  +  ( 8  x.  ( 10
^; 2 9 ) ) )  =  ( ( 8  x.  ( 10
^; 3 0 ) )  +  ( 8  x.  ( 10 ^; 2 9 ) ) )
6655, 61, 653eqtri 2648 . . . . . 6  |-  ( ( ( 10  x.  8 )  x.  ( 10
^; 2 9 ) )  +  ( 8  x.  ( 10 ^; 2 9 ) ) )  =  ( ( 8  x.  ( 10
^; 3 0 ) )  +  ( 8  x.  ( 10 ^; 2 9 ) ) )
6739, 44, 663eqtri 2648 . . . . 5  |-  (; 8 8  x.  ( 10 ^; 2 9 ) )  =  ( ( 8  x.  ( 10 ^; 3 0 ) )  +  ( 8  x.  ( 10
^; 2 9 ) ) )
6837, 67breqtrri 4680 . . . 4  |-  ( 8  x.  ( 10 ^; 3 0 ) )  <  (; 8 8  x.  ( 10 ^; 2 9 ) )
6925, 68jctil 560 . . 3  |-  ( (; 8
8  x.  ( 10
^; 2 9 ) )  e.  NN  ->  (
( 8  x.  ( 10 ^; 3 0 ) )  <  (; 8 8  x.  ( 10 ^; 2 9 ) )  /\  A. n  e. Odd 
( ( 7  < 
n  /\  n  <  (; 8
8  x.  ( 10
^; 2 9 ) ) )  ->  n  e. GoldbachOdd  ) ) )
7011, 18, 69rspcedvd 3317 . 2  |-  ( (; 8
8  x.  ( 10
^; 2 9 ) )  e.  NN  ->  E. m  e.  NN  ( ( 8  x.  ( 10 ^; 3 0 ) )  <  m  /\  A. n  e. Odd  (
( 7  <  n  /\  n  <  m )  ->  n  e. GoldbachOdd  ) ) )
7110, 70ax-mp 5 1  |-  E. m  e.  NN  ( ( 8  x.  ( 10 ^; 3 0 ) )  <  m  /\  A. n  e. Odd  (
( 7  <  n  /\  n  <  m )  ->  n  e. GoldbachOdd  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074   NNcn 11020   2c2 11070   3c3 11071   7c7 11075   8c8 11076   9c9 11077   10c10 11078   NN0cn0 11292  ;cdc 11493   ^cexp 12860   Odd codd 41538   GoldbachOdd cgbo 41635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-bgbltosilvaOLD 41706  ax-hgprmladderOLD 41708
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-10OLD 11087  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-iccp 41350  df-even 41539  df-odd 41540  df-gbe 41636  df-gbo 41638
This theorem is referenced by:  tgoldbachOLD  41712
  Copyright terms: Public domain W3C validator