MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxplem2 Structured version   Visualization version   Unicode version

Theorem tsmsxplem2 21957
Description: Lemma for tsmsxp 21958. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b  |-  B  =  ( Base `  G
)
tsmsxp.g  |-  ( ph  ->  G  e. CMnd )
tsmsxp.2  |-  ( ph  ->  G  e.  TopGrp )
tsmsxp.a  |-  ( ph  ->  A  e.  V )
tsmsxp.c  |-  ( ph  ->  C  e.  W )
tsmsxp.f  |-  ( ph  ->  F : ( A  X.  C ) --> B )
tsmsxp.h  |-  ( ph  ->  H : A --> B )
tsmsxp.1  |-  ( (
ph  /\  j  e.  A )  ->  ( H `  j )  e.  ( G tsums  ( k  e.  C  |->  ( j F k ) ) ) )
tsmsxp.j  |-  J  =  ( TopOpen `  G )
tsmsxp.z  |-  .0.  =  ( 0g `  G )
tsmsxp.p  |-  .+  =  ( +g  `  G )
tsmsxp.m  |-  .-  =  ( -g `  G )
tsmsxp.l  |-  ( ph  ->  L  e.  J )
tsmsxp.3  |-  ( ph  ->  .0.  e.  L )
tsmsxp.k  |-  ( ph  ->  K  e.  ( ~P A  i^i  Fin )
)
tsmsxp.4  |-  ( ph  ->  A. c  e.  S  A. d  e.  T  ( c  .+  d
)  e.  U )
tsmsxp.n  |-  ( ph  ->  N  e.  ( ~P C  i^i  Fin )
)
tsmsxp.s  |-  ( ph  ->  D  C_  ( K  X.  N ) )
tsmsxp.x  |-  ( ph  ->  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  N ) ) ) )  e.  L )
tsmsxp.5  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  e.  S )
tsmsxp.6  |-  ( ph  ->  A. g  e.  ( L  ^m  K ) ( G  gsumg  g )  e.  T
)
Assertion
Ref Expression
tsmsxplem2  |-  ( ph  ->  ( G  gsumg  ( H  |`  K ) )  e.  U )
Distinct variable groups:    g, k,  .0.    c, d, g, j, k, x, G    B, g, k    D, g, j, k, x    g, L, j, x    A, g, j, k    K, c, d, g, j, k, x    S, c    H, d, g, j, k, x    N, c, d, g, x    U, c, d    .- , d,
g, j, x    C, g, j, k    T, c, d, g    .+ , c,
d, g    F, c,
d, g, j, k, x    ph, g, j, k
Allowed substitution hints:    ph( x, c, d)    A( x, c, d)    B( x, j, c, d)    C( x, c, d)    D( c, d)    .+ ( x, j, k)    S( x, g, j, k, d)    T( x, j, k)    U( x, g, j, k)    H( c)    J( x, g, j, k, c, d)    L( k, c, d)    .- ( k, c)    N( j, k)    V( x, g, j, k, c, d)    W( x, g, j, k, c, d)    .0. ( x, j, c, d)

Proof of Theorem tsmsxplem2
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.2 . . . . 5  |-  ( ph  ->  G  e.  TopGrp )
2 tgpgrp 21882 . . . . 5  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
31, 2syl 17 . . . 4  |-  ( ph  ->  G  e.  Grp )
4 tsmsxp.g . . . 4  |-  ( ph  ->  G  e. CMnd )
5 isabl 18197 . . . 4  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
63, 4, 5sylanbrc 698 . . 3  |-  ( ph  ->  G  e.  Abel )
7 tsmsxp.b . . . 4  |-  B  =  ( Base `  G
)
8 tsmsxp.z . . . 4  |-  .0.  =  ( 0g `  G )
9 tsmsxp.k . . . . . 6  |-  ( ph  ->  K  e.  ( ~P A  i^i  Fin )
)
10 elfpw 8268 . . . . . . 7  |-  ( K  e.  ( ~P A  i^i  Fin )  <->  ( K  C_  A  /\  K  e. 
Fin ) )
1110simprbi 480 . . . . . 6  |-  ( K  e.  ( ~P A  i^i  Fin )  ->  K  e.  Fin )
129, 11syl 17 . . . . 5  |-  ( ph  ->  K  e.  Fin )
13 tsmsxp.n . . . . . 6  |-  ( ph  ->  N  e.  ( ~P C  i^i  Fin )
)
14 elfpw 8268 . . . . . . 7  |-  ( N  e.  ( ~P C  i^i  Fin )  <->  ( N  C_  C  /\  N  e. 
Fin ) )
1514simprbi 480 . . . . . 6  |-  ( N  e.  ( ~P C  i^i  Fin )  ->  N  e.  Fin )
1613, 15syl 17 . . . . 5  |-  ( ph  ->  N  e.  Fin )
17 xpfi 8231 . . . . 5  |-  ( ( K  e.  Fin  /\  N  e.  Fin )  ->  ( K  X.  N
)  e.  Fin )
1812, 16, 17syl2anc 693 . . . 4  |-  ( ph  ->  ( K  X.  N
)  e.  Fin )
19 tsmsxp.f . . . . 5  |-  ( ph  ->  F : ( A  X.  C ) --> B )
2010simplbi 476 . . . . . . 7  |-  ( K  e.  ( ~P A  i^i  Fin )  ->  K  C_  A )
219, 20syl 17 . . . . . 6  |-  ( ph  ->  K  C_  A )
2214simplbi 476 . . . . . . 7  |-  ( N  e.  ( ~P C  i^i  Fin )  ->  N  C_  C )
2313, 22syl 17 . . . . . 6  |-  ( ph  ->  N  C_  C )
24 xpss12 5225 . . . . . 6  |-  ( ( K  C_  A  /\  N  C_  C )  -> 
( K  X.  N
)  C_  ( A  X.  C ) )
2521, 23, 24syl2anc 693 . . . . 5  |-  ( ph  ->  ( K  X.  N
)  C_  ( A  X.  C ) )
2619, 25fssresd 6071 . . . 4  |-  ( ph  ->  ( F  |`  ( K  X.  N ) ) : ( K  X.  N ) --> B )
27 tsmsxp.3 . . . . 5  |-  ( ph  ->  .0.  e.  L )
2826, 18, 27fdmfifsupp 8285 . . . 4  |-  ( ph  ->  ( F  |`  ( K  X.  N ) ) finSupp  .0.  )
297, 8, 4, 18, 26, 28gsumcl 18316 . . 3  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  e.  B )
30 tsmsxp.h . . . . 5  |-  ( ph  ->  H : A --> B )
3130, 21fssresd 6071 . . . 4  |-  ( ph  ->  ( H  |`  K ) : K --> B )
3231, 12, 27fdmfifsupp 8285 . . . 4  |-  ( ph  ->  ( H  |`  K ) finSupp  .0.  )
337, 8, 4, 12, 31, 32gsumcl 18316 . . 3  |-  ( ph  ->  ( G  gsumg  ( H  |`  K ) )  e.  B )
34 tsmsxp.p . . . 4  |-  .+  =  ( +g  `  G )
35 tsmsxp.m . . . 4  |-  .-  =  ( -g `  G )
367, 34, 35ablpncan3 18222 . . 3  |-  ( ( G  e.  Abel  /\  (
( G  gsumg  ( F  |`  ( K  X.  N ) ) )  e.  B  /\  ( G  gsumg  ( H  |`  K ) )  e.  B ) )  ->  ( ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) ) )  =  ( G  gsumg  ( H  |`  K ) ) )
376, 29, 33, 36syl12anc 1324 . 2  |-  ( ph  ->  ( ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) ) )  =  ( G  gsumg  ( H  |`  K ) ) )
38 tsmsxp.5 . . 3  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  e.  S )
394adantr 481 . . . . . . . 8  |-  ( (
ph  /\  y  e.  K )  ->  G  e. CMnd )
40 snfi 8038 . . . . . . . . 9  |-  { y }  e.  Fin
4116adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  N  e.  Fin )
42 xpfi 8231 . . . . . . . . 9  |-  ( ( { y }  e.  Fin  /\  N  e.  Fin )  ->  ( { y }  X.  N )  e.  Fin )
4340, 41, 42sylancr 695 . . . . . . . 8  |-  ( (
ph  /\  y  e.  K )  ->  ( { y }  X.  N )  e.  Fin )
4419adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  F : ( A  X.  C ) --> B )
4521sselda 3603 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  y  e.  A )
4645snssd 4340 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  K )  ->  { y }  C_  A )
4723adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  K )  ->  N  C_  C )
48 xpss12 5225 . . . . . . . . . 10  |-  ( ( { y }  C_  A  /\  N  C_  C
)  ->  ( {
y }  X.  N
)  C_  ( A  X.  C ) )
4946, 47, 48syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  ( { y }  X.  N )  C_  ( A  X.  C ) )
5044, 49fssresd 6071 . . . . . . . 8  |-  ( (
ph  /\  y  e.  K )  ->  ( F  |`  ( { y }  X.  N ) ) : ( { y }  X.  N
) --> B )
51 fvex 6201 . . . . . . . . . . 11  |-  ( 0g
`  G )  e. 
_V
528, 51eqeltri 2697 . . . . . . . . . 10  |-  .0.  e.  _V
5352a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  .0.  e.  _V )
5450, 43, 53fdmfifsupp 8285 . . . . . . . 8  |-  ( (
ph  /\  y  e.  K )  ->  ( F  |`  ( { y }  X.  N ) ) finSupp  .0.  )
557, 8, 39, 43, 50, 54gsumcl 18316 . . . . . . 7  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) )  e.  B )
56 eqid 2622 . . . . . . 7  |-  ( y  e.  K  |->  ( G 
gsumg  ( F  |`  ( { y }  X.  N
) ) ) )  =  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )
5755, 56fmptd 6385 . . . . . 6  |-  ( ph  ->  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) : K --> B )
58 ovexd 6680 . . . . . . 7  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) )  e.  _V )
5956, 12, 58, 27fsuppmptdm 8286 . . . . . 6  |-  ( ph  ->  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) finSupp  .0.  )
607, 8, 35, 6, 12, 31, 57, 32, 59gsumsub 18348 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( ( H  |`  K )  oF 
.-  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  =  ( ( G 
gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) ) )
61 fvexd 6203 . . . . . . 7  |-  ( (
ph  /\  y  e.  K )  ->  ( H `  y )  e.  _V )
6230, 21feqresmpt 6250 . . . . . . 7  |-  ( ph  ->  ( H  |`  K )  =  ( y  e.  K  |->  ( H `  y ) ) )
63 eqidd 2623 . . . . . . 7  |-  ( ph  ->  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )  =  ( y  e.  K  |->  ( G 
gsumg  ( F  |`  ( { y }  X.  N
) ) ) ) )
6412, 61, 58, 62, 63offval2 6914 . . . . . 6  |-  ( ph  ->  ( ( H  |`  K )  oF 
.-  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  =  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )
6564oveq2d 6666 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( ( H  |`  K )  oF 
.-  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  =  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y ) 
.-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) ) )
66 cmnmnd 18208 . . . . . . . . . . . 12  |-  ( G  e. CMnd  ->  G  e.  Mnd )
6739, 66syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  G  e.  Mnd )
68 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  y  e.  K )
6944adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  F : ( A  X.  C ) --> B )
7045adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  y  e.  A )
7147sselda 3603 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  z  e.  C )
7269, 70, 71fovrnd 6806 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  (
y F z )  e.  B )
73 eqid 2622 . . . . . . . . . . . . 13  |-  ( z  e.  N  |->  ( y F z ) )  =  ( z  e.  N  |->  ( y F z ) )
7472, 73fmptd 6385 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  K )  ->  (
z  e.  N  |->  ( y F z ) ) : N --> B )
75 ovexd 6680 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  (
y F z )  e.  _V )
7673, 41, 75, 53fsuppmptdm 8286 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  K )  ->  (
z  e.  N  |->  ( y F z ) ) finSupp  .0.  )
777, 8, 39, 41, 74, 76gsumcl 18316 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) )  e.  B )
78 velsn 4193 . . . . . . . . . . . . . . . 16  |-  ( w  e.  { y }  <-> 
w  =  y )
79 ovres 6800 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  { y }  /\  z  e.  N )  ->  (
w ( F  |`  ( { y }  X.  N ) ) z )  =  ( w F z ) )
8078, 79sylanbr 490 . . . . . . . . . . . . . . 15  |-  ( ( w  =  y  /\  z  e.  N )  ->  ( w ( F  |`  ( { y }  X.  N ) ) z )  =  ( w F z ) )
81 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( w  =  y  ->  (
w F z )  =  ( y F z ) )
8281adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( w  =  y  /\  z  e.  N )  ->  ( w F z )  =  ( y F z ) )
8380, 82eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( w  =  y  /\  z  e.  N )  ->  ( w ( F  |`  ( { y }  X.  N ) ) z )  =  ( y F z ) )
8483mpteq2dva 4744 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  (
z  e.  N  |->  ( w ( F  |`  ( { y }  X.  N ) ) z ) )  =  ( z  e.  N  |->  ( y F z ) ) )
8584oveq2d 6666 . . . . . . . . . . . 12  |-  ( w  =  y  ->  ( G  gsumg  ( z  e.  N  |->  ( w ( F  |`  ( { y }  X.  N ) ) z ) ) )  =  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) ) )
867, 85gsumsn 18354 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  y  e.  K  /\  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) )  e.  B )  ->  ( G  gsumg  ( w  e.  {
y }  |->  ( G 
gsumg  ( z  e.  N  |->  ( w ( F  |`  ( { y }  X.  N ) ) z ) ) ) ) )  =  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) ) )
8767, 68, 77, 86syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( w  e.  {
y }  |->  ( G 
gsumg  ( z  e.  N  |->  ( w ( F  |`  ( { y }  X.  N ) ) z ) ) ) ) )  =  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) ) )
8840a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  { y }  e.  Fin )
897, 8, 39, 88, 41, 50, 54gsumxp 18375 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) )  =  ( G  gsumg  ( w  e.  { y } 
|->  ( G  gsumg  ( z  e.  N  |->  ( w ( F  |`  ( { y }  X.  N ) ) z ) ) ) ) ) )
90 ovres 6800 . . . . . . . . . . . . 13  |-  ( ( y  e.  K  /\  z  e.  N )  ->  ( y ( F  |`  ( K  X.  N
) ) z )  =  ( y F z ) )
9190adantll 750 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  (
y ( F  |`  ( K  X.  N
) ) z )  =  ( y F z ) )
9291mpteq2dva 4744 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  (
z  e.  N  |->  ( y ( F  |`  ( K  X.  N
) ) z ) )  =  ( z  e.  N  |->  ( y F z ) ) )
9392oveq2d 6666 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( z  e.  N  |->  ( y ( F  |`  ( K  X.  N
) ) z ) ) )  =  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) ) )
9487, 89, 933eqtr4d 2666 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) )  =  ( G  gsumg  ( z  e.  N  |->  ( y ( F  |`  ( K  X.  N ) ) z ) ) ) )
9594mpteq2dva 4744 . . . . . . . 8  |-  ( ph  ->  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )  =  ( y  e.  K  |->  ( G 
gsumg  ( z  e.  N  |->  ( y ( F  |`  ( K  X.  N
) ) z ) ) ) ) )
9695oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  =  ( G  gsumg  ( y  e.  K  |->  ( G  gsumg  ( z  e.  N  |->  ( y ( F  |`  ( K  X.  N
) ) z ) ) ) ) ) )
977, 8, 4, 12, 16, 26, 28gsumxp 18375 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  =  ( G 
gsumg  ( y  e.  K  |->  ( G  gsumg  ( z  e.  N  |->  ( y ( F  |`  ( K  X.  N
) ) z ) ) ) ) ) )
9896, 97eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  =  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) )
9998oveq2d 6666 . . . . 5  |-  ( ph  ->  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  =  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) ) )
10060, 65, 993eqtr3d 2664 . . . 4  |-  ( ph  ->  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  =  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) ) )
101 tsmsxp.x . . . . . . . 8  |-  ( ph  ->  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  N ) ) ) )  e.  L )
102 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( H `  x )  =  ( H `  y ) )
103 sneq 4187 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  { x }  =  { y } )
104103xpeq1d 5138 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( { x }  X.  N )  =  ( { y }  X.  N ) )
105104reseq2d 5396 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( F  |`  ( { x }  X.  N ) )  =  ( F  |`  ( { y }  X.  N ) ) )
106105oveq2d 6666 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( G  gsumg  ( F  |`  ( { x }  X.  N ) ) )  =  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )
107102, 106oveq12d 6668 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( H `  x
)  .-  ( G  gsumg  ( F  |`  ( {
x }  X.  N
) ) ) )  =  ( ( H `
 y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )
108107eleq1d 2686 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  N ) ) ) )  e.  L  <->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )  e.  L ) )
109108rspccva 3308 . . . . . . . 8  |-  ( ( A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  N ) ) ) )  e.  L  /\  y  e.  K )  ->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )  e.  L )
110101, 109sylan 488 . . . . . . 7  |-  ( (
ph  /\  y  e.  K )  ->  (
( H `  y
)  .-  ( G  gsumg  ( F  |`  ( {
y }  X.  N
) ) ) )  e.  L )
111 eqid 2622 . . . . . . 7  |-  ( y  e.  K  |->  ( ( H `  y ) 
.-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  =  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )
112110, 111fmptd 6385 . . . . . 6  |-  ( ph  ->  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) : K --> L )
113 tsmsxp.l . . . . . . 7  |-  ( ph  ->  L  e.  J )
114113, 9elmapd 7871 . . . . . 6  |-  ( ph  ->  ( ( y  e.  K  |->  ( ( H `
 y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  e.  ( L  ^m  K )  <-> 
( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) : K --> L ) )
115112, 114mpbird 247 . . . . 5  |-  ( ph  ->  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  e.  ( L  ^m  K ) )
116 tsmsxp.6 . . . . 5  |-  ( ph  ->  A. g  e.  ( L  ^m  K ) ( G  gsumg  g )  e.  T
)
117 oveq2 6658 . . . . . . 7  |-  ( g  =  ( y  e.  K  |->  ( ( H `
 y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  ->  ( G  gsumg  g )  =  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) ) )
118117eleq1d 2686 . . . . . 6  |-  ( g  =  ( y  e.  K  |->  ( ( H `
 y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  ->  (
( G  gsumg  g )  e.  T  <->  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  e.  T ) )
119118rspcv 3305 . . . . 5  |-  ( ( y  e.  K  |->  ( ( H `  y
)  .-  ( G  gsumg  ( F  |`  ( {
y }  X.  N
) ) ) ) )  e.  ( L  ^m  K )  -> 
( A. g  e.  ( L  ^m  K
) ( G  gsumg  g )  e.  T  ->  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  e.  T ) )
120115, 116, 119sylc 65 . . . 4  |-  ( ph  ->  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  e.  T )
121100, 120eqeltrrd 2702 . . 3  |-  ( ph  ->  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) )  e.  T
)
122 tsmsxp.4 . . 3  |-  ( ph  ->  A. c  e.  S  A. d  e.  T  ( c  .+  d
)  e.  U )
123 oveq1 6657 . . . . 5  |-  ( c  =  ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  -> 
( c  .+  d
)  =  ( ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  d ) )
124123eleq1d 2686 . . . 4  |-  ( c  =  ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  -> 
( ( c  .+  d )  e.  U  <->  ( ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  d )  e.  U ) )
125 oveq2 6658 . . . . 5  |-  ( d  =  ( ( G 
gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) )  ->  (
( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  d )  =  ( ( G 
gsumg  ( F  |`  ( K  X.  N ) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) ) ) )
126125eleq1d 2686 . . . 4  |-  ( d  =  ( ( G 
gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) )  ->  (
( ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  .+  d )  e.  U  <->  ( ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) ) )  e.  U ) )
127124, 126rspc2va 3323 . . 3  |-  ( ( ( ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  e.  S  /\  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) )  e.  T
)  /\  A. c  e.  S  A. d  e.  T  ( c  .+  d )  e.  U
)  ->  ( ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) ) )  e.  U )
12838, 121, 122, 127syl21anc 1325 . 2  |-  ( ph  ->  ( ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) ) )  e.  U )
12937, 128eqeltrrd 2702 1  |-  ( ph  ->  ( G  gsumg  ( H  |`  K ) )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177    |-> cmpt 4729    X. cxp 5112    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    ^m cmap 7857   Fincfn 7955   Basecbs 15857   +g cplusg 15941   TopOpenctopn 16082   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   Grpcgrp 17422   -gcsg 17424  CMndccmn 18193   Abelcabl 18194   TopGrpctgp 21875   tsums ctsu 21929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-tgp 21877
This theorem is referenced by:  tsmsxp  21958
  Copyright terms: Public domain W3C validator