Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coskpi2 Structured version   Visualization version   GIF version

Theorem coskpi2 40077
Description: The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
coskpi2 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))

Proof of Theorem coskpi2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 11409 . . . . 5 2 ∈ ℤ
2 divides 14985 . . . . 5 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
31, 2mpan 706 . . . 4 (𝐾 ∈ ℤ → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
43biimpa 501 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾)
5 zcn 11382 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
6 2cnd 11093 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 2 ∈ ℂ)
7 picn 24211 . . . . . . . . . . . . . . 15 π ∈ ℂ
87a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → π ∈ ℂ)
95, 6, 8mulassd 10063 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → ((𝑛 · 2) · π) = (𝑛 · (2 · π)))
109eqcomd 2628 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛 · (2 · π)) = ((𝑛 · 2) · π))
1110adantr 481 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝑛 · (2 · π)) = ((𝑛 · 2) · π))
12 oveq1 6657 . . . . . . . . . . . 12 ((𝑛 · 2) = 𝐾 → ((𝑛 · 2) · π) = (𝐾 · π))
1312adantl 482 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → ((𝑛 · 2) · π) = (𝐾 · π))
1411, 13eqtr2d 2657 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝐾 · π) = (𝑛 · (2 · π)))
1514fveq2d 6195 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = (cos‘(𝑛 · (2 · π))))
16 cos2kpi 24236 . . . . . . . . . 10 (𝑛 ∈ ℤ → (cos‘(𝑛 · (2 · π))) = 1)
1716adantr 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝑛 · (2 · π))) = 1)
1815, 17eqtrd 2656 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = 1)
19183adant1 1079 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = 1)
20 iftrue 4092 . . . . . . . . 9 (2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = 1)
2120eqcomd 2628 . . . . . . . 8 (2 ∥ 𝐾 → 1 = if(2 ∥ 𝐾, 1, -1))
22213ad2ant1 1082 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → 1 = if(2 ∥ 𝐾, 1, -1))
2319, 22eqtrd 2656 . . . . . 6 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
24233exp 1264 . . . . 5 (2 ∥ 𝐾 → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
2524adantl 482 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
2625rexlimdv 3030 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)))
274, 26mpd 15 . 2 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
28 odd2np1 15065 . . . 4 (𝐾 ∈ ℤ → (¬ 2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾))
2928biimpa 501 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾)
306, 5mulcld 10060 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
31 1cnd 10056 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 1 ∈ ℂ)
3230, 31, 8adddird 10065 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) · π) = (((2 · 𝑛) · π) + (1 · π)))
336, 5mulcomd 10061 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → (2 · 𝑛) = (𝑛 · 2))
3433oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → ((2 · 𝑛) · π) = ((𝑛 · 2) · π))
3534, 9eqtrd 2656 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((2 · 𝑛) · π) = (𝑛 · (2 · π)))
367mulid2i 10043 . . . . . . . . . . . . . . 15 (1 · π) = π
3736a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (1 · π) = π)
3835, 37oveq12d 6668 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (((2 · 𝑛) · π) + (1 · π)) = ((𝑛 · (2 · π)) + π))
39 2cn 11091 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
4039, 7mulcli 10045 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
4140a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (2 · π) ∈ ℂ)
425, 41mulcld 10060 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 · (2 · π)) ∈ ℂ)
4342, 8addcomd 10238 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → ((𝑛 · (2 · π)) + π) = (π + (𝑛 · (2 · π))))
4432, 38, 433eqtrrd 2661 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (π + (𝑛 · (2 · π))) = (((2 · 𝑛) + 1) · π))
4544adantr 481 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (π + (𝑛 · (2 · π))) = (((2 · 𝑛) + 1) · π))
46 oveq1 6657 . . . . . . . . . . . 12 (((2 · 𝑛) + 1) = 𝐾 → (((2 · 𝑛) + 1) · π) = (𝐾 · π))
4746adantl 482 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) + 1) · π) = (𝐾 · π))
4845, 47eqtr2d 2657 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · π) = (π + (𝑛 · (2 · π))))
4948fveq2d 6195 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = (cos‘(π + (𝑛 · (2 · π)))))
50 cosper 24234 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 𝑛 ∈ ℤ) → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
517, 50mpan 706 . . . . . . . . . 10 (𝑛 ∈ ℤ → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
5251adantr 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(π + (𝑛 · (2 · π)))) = (cos‘π))
53 cospi 24224 . . . . . . . . . 10 (cos‘π) = -1
5453a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘π) = -1)
5549, 52, 543eqtrd 2660 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = -1)
56553adant1 1079 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = -1)
57 iffalse 4095 . . . . . . . . 9 (¬ 2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = -1)
5857eqcomd 2628 . . . . . . . 8 (¬ 2 ∥ 𝐾 → -1 = if(2 ∥ 𝐾, 1, -1))
59583ad2ant1 1082 . . . . . . 7 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → -1 = if(2 ∥ 𝐾, 1, -1))
6056, 59eqtrd 2656 . . . . . 6 ((¬ 2 ∥ 𝐾𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
61603exp 1264 . . . . 5 (¬ 2 ∥ 𝐾 → (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
6261adantl 482 . . . 4 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))))
6362rexlimdv 3030 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)))
6429, 63mpd 15 . 2 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
6527, 64pm2.61dan 832 1 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  2c2 11070  cz 11377  cosccos 14795  πcpi 14797  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  sqwvfourb  40446
  Copyright terms: Public domain W3C validator