Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem29 Structured version   Visualization version   GIF version

Theorem etransclem29 40480
Description: The 𝑁-th derivative of 𝐹. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etranslemdvnf2lemlem.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem29.a (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem29.p (𝜑𝑃 ∈ ℕ)
etransclem29.m (𝜑𝑀 ∈ ℕ0)
etransclem29.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem29.n (𝜑𝑁 ∈ ℕ0)
etransclem29.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem29.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem29.e 𝐸 = (𝑥𝑋 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
Assertion
Ref Expression
etransclem29 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
Distinct variable groups:   𝐶,𝑐   𝐻,𝑐,𝑗,𝑛,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑁,𝑐,𝑗,𝑛,𝑥   𝑃,𝑗,𝑥   𝑆,𝑐,𝑗,𝑛,𝑥   𝑗,𝑋,𝑥,𝑛   𝜑,𝑗,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑥,𝑗,𝑛)   𝑃(𝑛,𝑐)   𝐸(𝑥,𝑗,𝑛,𝑐)   𝐹(𝑥,𝑗,𝑛,𝑐)   𝑋(𝑐)

Proof of Theorem etransclem29
Dummy variables 𝑘 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etranslemdvnf2lemlem.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem29.a . . . . . 6 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
31, 2dvdmsscn 40151 . . . . 5 (𝜑𝑋 ⊆ ℂ)
4 etransclem29.p . . . . 5 (𝜑𝑃 ∈ ℕ)
5 etransclem29.m . . . . 5 (𝜑𝑀 ∈ ℕ0)
6 etransclem29.f . . . . 5 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
7 etransclem29.h . . . . 5 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
8 etransclem29.e . . . . 5 𝐸 = (𝑥𝑋 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
93, 4, 5, 6, 7, 8etransclem4 40455 . . . 4 (𝜑𝐹 = 𝐸)
109oveq2d 6666 . . 3 (𝜑 → (𝑆 D𝑛 𝐹) = (𝑆 D𝑛 𝐸))
1110fveq1d 6193 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = ((𝑆 D𝑛 𝐸)‘𝑁))
12 fzfid 12772 . . 3 (𝜑 → (0...𝑀) ∈ Fin)
133adantr 481 . . . 4 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑋 ⊆ ℂ)
144adantr 481 . . . 4 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
15 simpr 477 . . . 4 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
1613, 14, 7, 15etransclem1 40452 . . 3 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐻𝑗):𝑋⟶ℂ)
17 etransclem29.n . . 3 (𝜑𝑁 ∈ ℕ0)
1813ad2ant1 1082 . . . 4 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
1923ad2ant1 1082 . . . 4 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
2043ad2ant1 1082 . . . 4 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → 𝑃 ∈ ℕ)
21 etransclem5 40456 . . . . 5 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
227, 21eqtri 2644 . . . 4 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
23 simp2 1062 . . . 4 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑀))
24 elfznn0 12433 . . . . 5 (𝑖 ∈ (0...𝑁) → 𝑖 ∈ ℕ0)
25243ad2ant3 1084 . . . 4 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → 𝑖 ∈ ℕ0)
2618, 19, 20, 22, 23, 25etransclem20 40471 . . 3 ((𝜑𝑗 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑗))‘𝑖):𝑋⟶ℂ)
27 etransclem29.c . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
281, 2, 12, 16, 17, 26, 8, 27dvnprod 40164 . 2 (𝜑 → ((𝑆 D𝑛 𝐸)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
2911, 28eqtrd 2656 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  wss 3574  ifcif 4086  {cpr 4179  cmpt 4729  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  ...cfz 12326  cexp 12860  !cfa 13060  Σcsu 14416  cprod 14635  t crest 16081  TopOpenctopn 16082  fldccnfld 19746   D𝑛 cdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  etransclem30  40481
  Copyright terms: Public domain W3C validator