MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnum Structured version   Visualization version   Unicode version

Theorem lebnum 22763
Description: The Lebesgue number lemma, or Lebesgue covering lemma. If  X is a compact metric space and  U is an open cover of  X, then there exists a positive real number 
d such that every ball of size  d (and every subset of a ball of size  d, including every subset of diameter less than  d) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j  |-  J  =  ( MetOpen `  D )
lebnum.d  |-  ( ph  ->  D  e.  ( Met `  X ) )
lebnum.c  |-  ( ph  ->  J  e.  Comp )
lebnum.s  |-  ( ph  ->  U  C_  J )
lebnum.u  |-  ( ph  ->  X  =  U. U
)
Assertion
Ref Expression
lebnum  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
Distinct variable groups:    u, d, x, D    J, d, x    U, d, u, x    ph, d, x    X, d, u, x
Allowed substitution hints:    ph( u)    J( u)

Proof of Theorem lebnum
Dummy variables  k  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnum.c . . 3  |-  ( ph  ->  J  e.  Comp )
2 lebnum.s . . 3  |-  ( ph  ->  U  C_  J )
3 lebnum.d . . . . . 6  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 metxmet 22139 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
53, 4syl 17 . . . . 5  |-  ( ph  ->  D  e.  ( *Met `  X ) )
6 lebnum.j . . . . . 6  |-  J  =  ( MetOpen `  D )
76mopnuni 22246 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
85, 7syl 17 . . . 4  |-  ( ph  ->  X  =  U. J
)
9 lebnum.u . . . 4  |-  ( ph  ->  X  =  U. U
)
108, 9eqtr3d 2658 . . 3  |-  ( ph  ->  U. J  =  U. U )
11 eqid 2622 . . . 4  |-  U. J  =  U. J
1211cmpcov 21192 . . 3  |-  ( ( J  e.  Comp  /\  U  C_  J  /\  U. J  =  U. U )  ->  E. w  e.  ( ~P U  i^i  Fin ) U. J  =  U. w )
131, 2, 10, 12syl3anc 1326 . 2  |-  ( ph  ->  E. w  e.  ( ~P U  i^i  Fin ) U. J  =  U. w )
14 1rp 11836 . . . 4  |-  1  e.  RR+
15 inss1 3833 . . . . . . . . . 10  |-  ( ~P U  i^i  Fin )  C_ 
~P U
16 simprl 794 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  ->  w  e.  ( ~P U  i^i  Fin ) )
1715, 16sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  ->  w  e.  ~P U )
1817elpwid 4170 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  ->  w  C_  U
)
1918ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  w  C_  U
)
20 simplr 792 . . . . . . 7  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  X  e.  w )
2119, 20sseldd 3604 . . . . . 6  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  X  e.  U )
225ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  D  e.  ( *Met `  X
) )
23 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  x  e.  X )
24 rpxr 11840 . . . . . . . 8  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
2514, 24mp1i 13 . . . . . . 7  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  1  e.  RR* )
26 blssm 22223 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  1  e.  RR* )  ->  ( x ( ball `  D ) 1 ) 
C_  X )
2722, 23, 25, 26syl3anc 1326 . . . . . 6  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  ( x
( ball `  D )
1 )  C_  X
)
28 sseq2 3627 . . . . . . 7  |-  ( u  =  X  ->  (
( x ( ball `  D ) 1 ) 
C_  u  <->  ( x
( ball `  D )
1 )  C_  X
) )
2928rspcev 3309 . . . . . 6  |-  ( ( X  e.  U  /\  ( x ( ball `  D ) 1 ) 
C_  X )  ->  E. u  e.  U  ( x ( ball `  D ) 1 ) 
C_  u )
3021, 27, 29syl2anc 693 . . . . 5  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  E. u  e.  U  ( x
( ball `  D )
1 )  C_  u
)
3130ralrimiva 2966 . . . 4  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  ->  A. x  e.  X  E. u  e.  U  ( x ( ball `  D ) 1 ) 
C_  u )
32 oveq2 6658 . . . . . . . 8  |-  ( d  =  1  ->  (
x ( ball `  D
) d )  =  ( x ( ball `  D ) 1 ) )
3332sseq1d 3632 . . . . . . 7  |-  ( d  =  1  ->  (
( x ( ball `  D ) d ) 
C_  u  <->  ( x
( ball `  D )
1 )  C_  u
) )
3433rexbidv 3052 . . . . . 6  |-  ( d  =  1  ->  ( E. u  e.  U  ( x ( ball `  D ) d ) 
C_  u  <->  E. u  e.  U  ( x
( ball `  D )
1 )  C_  u
) )
3534ralbidv 2986 . . . . 5  |-  ( d  =  1  ->  ( A. x  e.  X  E. u  e.  U  ( x ( ball `  D ) d ) 
C_  u  <->  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
1 )  C_  u
) )
3635rspcev 3309 . . . 4  |-  ( ( 1  e.  RR+  /\  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) 1 )  C_  u )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
3714, 31, 36sylancr 695 . . 3  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
383ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  D  e.  ( Met `  X ) )
391ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  J  e.  Comp )
4018adantr 481 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  w  C_  U
)
412ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  U  C_  J
)
4240, 41sstrd 3613 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  w  C_  J
)
438ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  X  =  U. J )
44 simplrr 801 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  U. J  = 
U. w )
4543, 44eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  X  =  U. w )
46 inss2 3834 . . . . . . 7  |-  ( ~P U  i^i  Fin )  C_ 
Fin
4746, 16sseldi 3601 . . . . . 6  |-  ( (
ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  ->  w  e.  Fin )
4847adantr 481 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  w  e.  Fin )
49 simpr 477 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  -.  X  e.  w )
50 eqid 2622 . . . . 5  |-  ( y  e.  X  |->  sum_ k  e.  w inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  <  ) )  =  ( y  e.  X  |-> 
sum_ k  e.  w inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) )
51 eqid 2622 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
526, 38, 39, 42, 45, 48, 49, 50, 51lebnumlem3 22762 . . . 4  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  w  ( x (
ball `  D )
d )  C_  u
)
53 ssrexv 3667 . . . . . . 7  |-  ( w 
C_  U  ->  ( E. u  e.  w  ( x ( ball `  D ) d ) 
C_  u  ->  E. u  e.  U  ( x
( ball `  D )
d )  C_  u
) )
5440, 53syl 17 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  ( E. u  e.  w  (
x ( ball `  D
) d )  C_  u  ->  E. u  e.  U  ( x ( ball `  D ) d ) 
C_  u ) )
5554ralimdv 2963 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  ( A. x  e.  X  E. u  e.  w  (
x ( ball `  D
) d )  C_  u  ->  A. x  e.  X  E. u  e.  U  ( x ( ball `  D ) d ) 
C_  u ) )
5655reximdv 3016 . . . 4  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  ( E. d  e.  RR+  A. x  e.  X  E. u  e.  w  ( x
( ball `  D )
d )  C_  u  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u ) )
5752, 56mpd 15 . . 3  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
5837, 57pm2.61dan 832 . 2  |-  ( (
ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
5913, 58rexlimddv 3035 1  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   Fincfn 7955  infcinf 8347   1c1 9937   RR*cxr 10073    < clt 10074   RR+crp 11832   (,)cioo 12175   sum_csu 14416   topGenctg 16098   *Metcxmt 19731   Metcme 19732   ballcbl 19733   MetOpencmopn 19736   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  xlebnum  22764  lebnumii  22765
  Copyright terms: Public domain W3C validator