MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem3 Structured version   Visualization version   GIF version

Theorem selberglem3 25236
Description: Lemma for selberg 25237. Estimation of the left-hand side of logsqvma2 25232. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberglem3 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑛,𝑑,𝑥,𝑦

Proof of Theorem selberglem3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . . . . 10 (𝑛 = (𝑑 · 𝑚) → (𝑛 / 𝑑) = ((𝑑 · 𝑚) / 𝑑))
21fveq2d 6195 . . . . . . . . 9 (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑)))
32oveq1d 6665 . . . . . . . 8 (𝑛 = (𝑑 · 𝑚) → ((log‘(𝑛 / 𝑑))↑2) = ((log‘((𝑑 · 𝑚) / 𝑑))↑2))
43oveq2d 6666 . . . . . . 7 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)))
5 rpre 11839 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
6 ssrab2 3687 . . . . . . . . . . 11 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
7 simprr 796 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
86, 7sseldi 3601 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℕ)
9 mucl 24867 . . . . . . . . . 10 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
108, 9syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℤ)
1110zcnd 11483 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℂ)
12 elfznn 12370 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1312nnrpd 11870 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
1413ad2antrl 764 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑛 ∈ ℝ+)
158nnrpd 11870 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℝ+)
1614, 15rpdivcld 11889 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (𝑛 / 𝑑) ∈ ℝ+)
17 relogcl 24322 . . . . . . . . . . 11 ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℝ)
1817recnd 10068 . . . . . . . . . 10 ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℂ)
1916, 18syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
2019sqcld 13006 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((log‘(𝑛 / 𝑑))↑2) ∈ ℂ)
2111, 20mulcld 10060 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) ∈ ℂ)
224, 5, 21dvdsflsumcom 24914 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)))
23 elfznn 12370 . . . . . . . . . . . . 13 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ)
24233ad2ant3 1084 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ)
2524nncnd 11036 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ)
26 elfznn 12370 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
27263ad2ant2 1083 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℕ)
2827nncnd 11036 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ)
2927nnne0d 11065 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0)
3025, 28, 29divcan3d 10806 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚)
3130fveq2d 6195 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚))
3231oveq1d 6665 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘((𝑑 · 𝑚) / 𝑑))↑2) = ((log‘𝑚)↑2))
3332oveq2d 6666 . . . . . . 7 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘𝑚)↑2)))
34332sumeq2dv 14436 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
3522, 34eqtrd 2656 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
3635oveq1d 6665 . . . 4 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) = (Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥))
3736oveq1d 6665 . . 3 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥))) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
3837mpteq2ia 4740 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
39 eqid 2622 . . 3 ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑) = ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑)
4039selberglem2 25235 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
4138, 40eqeltri 2697 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  cz 11377  +crp 11832  ...cfz 12326  cfl 12591  cexp 12860  𝑂(1)co1 14217  Σcsu 14416  cdvds 14983  logclog 24301  μcmu 24821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-em 24719  df-mu 24827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator