Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgtd Structured version   Visualization version   GIF version

Theorem tgoldbachgtd 30740
Description: Odd integers greater than (10↑27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 (Contributed by Thierry Arnoux, 15-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgtd.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgtd.n (𝜑𝑁𝑂)
tgoldbachgtd.1 (𝜑 → (10↑27) ≤ 𝑁)
Assertion
Ref Expression
tgoldbachgtd (𝜑 → 0 < (#‘((𝑂 ∩ ℙ)(repr‘3)𝑁)))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑂
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem tgoldbachgtd
Dummy variables 𝑘 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgoldbachgtd.o . . 3 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2 tgoldbachgtd.n . . . 4 (𝜑𝑁𝑂)
32ad3antrrr 766 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → 𝑁𝑂)
4 tgoldbachgtd.1 . . . 4 (𝜑 → (10↑27) ≤ 𝑁)
54ad3antrrr 766 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → (10↑27) ≤ 𝑁)
6 elmapi 7879 . . . 4 ( ∈ ((0[,)+∞) ↑𝑚 ℕ) → :ℕ⟶(0[,)+∞))
76ad3antlr 767 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → :ℕ⟶(0[,)+∞))
8 elmapi 7879 . . . 4 (𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ) → 𝑘:ℕ⟶(0[,)+∞))
98ad2antlr 763 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → 𝑘:ℕ⟶(0[,)+∞))
10 simpr1 1067 . . . . 5 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955))
11 fveq2 6191 . . . . . . 7 (𝑚 = 𝑛 → (𝑘𝑚) = (𝑘𝑛))
1211breq1d 4663 . . . . . 6 (𝑚 = 𝑛 → ((𝑘𝑚) ≤ (1.079955) ↔ (𝑘𝑛) ≤ (1.079955)))
1312cbvralv 3171 . . . . 5 (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ↔ ∀𝑛 ∈ ℕ (𝑘𝑛) ≤ (1.079955))
1410, 13sylib 208 . . . 4 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑛 ∈ ℕ (𝑘𝑛) ≤ (1.079955))
1514r19.21bi 2932 . . 3 (((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) ∧ 𝑛 ∈ ℕ) → (𝑘𝑛) ≤ (1.079955))
16 simpr2 1068 . . . . 5 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414))
17 fveq2 6191 . . . . . . 7 (𝑚 = 𝑛 → (𝑚) = (𝑛))
1817breq1d 4663 . . . . . 6 (𝑚 = 𝑛 → ((𝑚) ≤ (1.414) ↔ (𝑛) ≤ (1.414)))
1918cbvralv 3171 . . . . 5 (∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ↔ ∀𝑛 ∈ ℕ (𝑛) ≤ (1.414))
2016, 19sylib 208 . . . 4 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ∀𝑛 ∈ ℕ (𝑛) ≤ (1.414))
2120r19.21bi 2932 . . 3 (((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) ∧ 𝑛 ∈ ℕ) → (𝑛) ≤ (1.414))
22 simpr3 1069 . . . 4 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
23 fveq2 6191 . . . . . . 7 (𝑥 = 𝑦 → (((Λ ∘𝑓 · )vts𝑁)‘𝑥) = (((Λ ∘𝑓 · )vts𝑁)‘𝑦))
24 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑦 → (((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥) = (((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑦))
2524oveq1d 6665 . . . . . . 7 (𝑥 = 𝑦 → ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2) = ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑦)↑2))
2623, 25oveq12d 6668 . . . . . 6 (𝑥 = 𝑦 → ((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) = ((((Λ ∘𝑓 · )vts𝑁)‘𝑦) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑦)↑2)))
27 oveq2 6658 . . . . . . . 8 (𝑥 = 𝑦 → (-𝑁 · 𝑥) = (-𝑁 · 𝑦))
2827oveq2d 6666 . . . . . . 7 (𝑥 = 𝑦 → ((i · (2 · π)) · (-𝑁 · 𝑥)) = ((i · (2 · π)) · (-𝑁 · 𝑦)))
2928fveq2d 6195 . . . . . 6 (𝑥 = 𝑦 → (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))) = (exp‘((i · (2 · π)) · (-𝑁 · 𝑦))))
3026, 29oveq12d 6668 . . . . 5 (𝑥 = 𝑦 → (((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (((((Λ ∘𝑓 · )vts𝑁)‘𝑦) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑦)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑦)))))
3130cbvitgv 23543 . . . 4 ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑦) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑦)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑦)))) d𝑦
3222, 31syl6breq 4694 . . 3 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑦) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑦)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑦)))) d𝑦)
331, 3, 5, 7, 9, 15, 21, 32tgoldbachgtda 30739 . 2 ((((𝜑 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ 𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)) ∧ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) → 0 < (#‘((𝑂 ∩ ℙ)(repr‘3)𝑁)))
341, 2, 4hgt749d 30727 . 2 (𝜑 → ∃ ∈ ((0[,)+∞) ↑𝑚 ℕ)∃𝑘 ∈ ((0[,)+∞) ↑𝑚 ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘𝑓 · )vts𝑁)‘𝑥) · ((((Λ ∘𝑓 · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
3533, 34r19.29vva 3081 1 (𝜑 → 0 < (#‘((𝑂 ∩ ℙ)(repr‘3)𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  cin 3573   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857  0cc0 9936  1c1 9937  ici 9938   · cmul 9941  +∞cpnf 10071   < clt 10074  cle 10075  -cneg 10267  cn 11020  2c2 11070  3c3 11071  4c4 11072  5c5 11073  7c7 11075  8c8 11076  9c9 11077  cz 11377  cdc 11493  (,)cioo 12175  [,)cico 12177  cexp 12860  #chash 13117  expce 14792  πcpi 14797  cdvds 14983  cprime 15385  citg 23387  Λcvma 24818  cdp2 29577  .cdp 29595  reprcrepr 30686  vtscvts 30713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hgt749 30722  ax-ros335 30723  ax-ros336 30724
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-r1 8627  df-rank 8628  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-pmtr 17862  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631  df-ulm 24131  df-log 24303  df-cxp 24304  df-atan 24594  df-cht 24823  df-vma 24824  df-chp 24825  df-dp2 29578  df-dp 29596  df-repr 30687  df-vts 30714
This theorem is referenced by:  tgoldbachgt  30741
  Copyright terms: Public domain W3C validator