MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absexp Structured version   Visualization version   Unicode version

Theorem absexp 14044
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
Assertion
Ref Expression
absexp  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )

Proof of Theorem absexp
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . 6  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
21fveq2d 6195 . . . . 5  |-  ( j  =  0  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ 0 ) ) )
3 oveq2 6658 . . . . 5  |-  ( j  =  0  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ 0 ) )
42, 3eqeq12d 2637 . . . 4  |-  ( j  =  0  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ 0 ) )  =  ( ( abs `  A ) ^ 0 ) ) )
54imbi2d 330 . . 3  |-  ( j  =  0  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ 0 ) )  =  ( ( abs `  A
) ^ 0 ) ) ) )
6 oveq2 6658 . . . . . 6  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
76fveq2d 6195 . . . . 5  |-  ( j  =  k  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ k ) ) )
8 oveq2 6658 . . . . 5  |-  ( j  =  k  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ k
) )
97, 8eqeq12d 2637 . . . 4  |-  ( j  =  k  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) ) )
109imbi2d 330 . . 3  |-  ( j  =  k  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) ) ) )
11 oveq2 6658 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1211fveq2d 6195 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ ( k  +  1 ) ) ) )
13 oveq2 6658 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) )
1412, 13eqeq12d 2637 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) ) )
1514imbi2d 330 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
16 oveq2 6658 . . . . . 6  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1716fveq2d 6195 . . . . 5  |-  ( j  =  N  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ N ) ) )
18 oveq2 6658 . . . . 5  |-  ( j  =  N  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ N
) )
1917, 18eqeq12d 2637 . . . 4  |-  ( j  =  N  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) ) )
2019imbi2d 330 . . 3  |-  ( j  =  N  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ N
) )  =  ( ( abs `  A
) ^ N ) ) ) )
21 abs1 14037 . . . 4  |-  ( abs `  1 )  =  1
22 exp0 12864 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2322fveq2d 6195 . . . 4  |-  ( A  e.  CC  ->  ( abs `  ( A ^
0 ) )  =  ( abs `  1
) )
24 abscl 14018 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
2524recnd 10068 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  CC )
2625exp0d 13002 . . . 4  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 0 )  =  1 )
2721, 23, 263eqtr4a 2682 . . 3  |-  ( A  e.  CC  ->  ( abs `  ( A ^
0 ) )  =  ( ( abs `  A
) ^ 0 ) )
28 oveq1 6657 . . . . . . . 8  |-  ( ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( ( abs `  ( A ^
k ) )  x.  ( abs `  A
) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
2928adantl 482 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  (
( abs `  ( A ^ k ) )  x.  ( abs `  A
) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
30 expp1 12867 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3130fveq2d 6195 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ ( k  +  1 ) ) )  =  ( abs `  (
( A ^ k
)  x.  A ) ) )
32 expcl 12878 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
33 simpl 473 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
34 absmul 14034 . . . . . . . . . 10  |-  ( ( ( A ^ k
)  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( A ^ k
)  x.  A ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
3532, 33, 34syl2anc 693 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  x.  A ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
3631, 35eqtrd 2656 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  ( A ^ k
) )  x.  ( abs `  A ) ) )
3736adantr 481 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( abs `  ( A ^
( k  +  1 ) ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
38 expp1 12867 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
3925, 38sylan 488 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
4039adantr 481 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  (
( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
4129, 37, 403eqtr4d 2666 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( abs `  ( A ^
( k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
4241exp31 630 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
4342com12 32 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  CC  ->  (
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
4443a2d 29 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  ->  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( A  e.  CC  ->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) ) ) )
455, 10, 15, 20, 27, 44nn0ind 11472 . 2  |-  ( N  e.  NN0  ->  ( A  e.  CC  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) ) )
4645impcom 446 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NN0cn0 11292   ^cexp 12860   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  absexpz  14045  abssq  14046  sqabs  14047  absexpd  14191  expcnv  14596  eftabs  14806  efcllem  14808  efaddlem  14823  iblabsr  23596  iblmulc2  23597  abelthlem7  24192  efif1olem3  24290  efif1olem4  24291  logtayllem  24405  bndatandm  24656  ftalem1  24799  mule1  24874  iblmulc2nc  33475
  Copyright terms: Public domain W3C validator