MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayllem Structured version   Visualization version   Unicode version

Theorem logtayllem 24405
Description: Lemma for logtayl 24406. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
logtayllem  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n
) )  x.  ( A ^ n ) ) ) )  e.  dom  ~~>  )
Distinct variable group:    A, n

Proof of Theorem logtayllem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 1nn0 11308 . . 3  |-  1  e.  NN0
32a1i 11 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
1  e.  NN0 )
4 oveq2 6658 . . . . 5  |-  ( n  =  k  ->  (
( abs `  A
) ^ n )  =  ( ( abs `  A ) ^ k
) )
5 eqid 2622 . . . . 5  |-  ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( abs `  A ) ^ n
) )
6 ovex 6678 . . . . 5  |-  ( ( abs `  A ) ^ k )  e. 
_V
74, 5, 6fvmpt 6282 . . . 4  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) ) `
 k )  =  ( ( abs `  A
) ^ k ) )
87adantl 482 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) ) `
 k )  =  ( ( abs `  A
) ^ k ) )
9 abscl 14018 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
109adantr 481 . . . 4  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  e.  RR )
11 reexpcl 12877 . . . 4  |-  ( ( ( abs `  A
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( abs `  A
) ^ k )  e.  RR )
1210, 11sylan 488 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  ( ( abs `  A ) ^ k
)  e.  RR )
138, 12eqeltrd 2701 . 2  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) ) `
 k )  e.  RR )
14 eqeq1 2626 . . . . . . 7  |-  ( n  =  k  ->  (
n  =  0  <->  k  =  0 ) )
15 oveq2 6658 . . . . . . 7  |-  ( n  =  k  ->  (
1  /  n )  =  ( 1  / 
k ) )
1614, 15ifbieq2d 4111 . . . . . 6  |-  ( n  =  k  ->  if ( n  =  0 ,  0 ,  ( 1  /  n ) )  =  if ( k  =  0 ,  0 ,  ( 1  /  k ) ) )
17 oveq2 6658 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
1816, 17oveq12d 6668 . . . . 5  |-  ( n  =  k  ->  ( if ( n  =  0 ,  0 ,  ( 1  /  n ) )  x.  ( A ^ n ) )  =  ( if ( k  =  0 ,  0 ,  ( 1  /  k ) )  x.  ( A ^
k ) ) )
19 eqid 2622 . . . . 5  |-  ( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n ) )  x.  ( A ^ n ) ) )  =  ( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n ) )  x.  ( A ^ n ) ) )
20 ovex 6678 . . . . 5  |-  ( if ( k  =  0 ,  0 ,  ( 1  /  k ) )  x.  ( A ^ k ) )  e.  _V
2118, 19, 20fvmpt 6282 . . . 4  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n ) )  x.  ( A ^ n ) ) ) `  k )  =  ( if ( k  =  0 ,  0 ,  ( 1  /  k ) )  x.  ( A ^
k ) ) )
2221adantl 482 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  ( ( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n ) )  x.  ( A ^ n ) ) ) `  k )  =  ( if ( k  =  0 ,  0 ,  ( 1  /  k ) )  x.  ( A ^
k ) ) )
23 0cnd 10033 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  ( abs `  A )  <  1
)  /\  k  e.  NN0 )  /\  k  =  0 )  ->  0  e.  CC )
24 nn0cn 11302 . . . . . . 7  |-  ( k  e.  NN0  ->  k  e.  CC )
2524adantl 482 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  k  e.  CC )
26 df-ne 2795 . . . . . . 7  |-  ( k  =/=  0  <->  -.  k  =  0 )
2726biimpri 218 . . . . . 6  |-  ( -.  k  =  0  -> 
k  =/=  0 )
28 reccl 10692 . . . . . 6  |-  ( ( k  e.  CC  /\  k  =/=  0 )  -> 
( 1  /  k
)  e.  CC )
2925, 27, 28syl2an 494 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  ( abs `  A )  <  1
)  /\  k  e.  NN0 )  /\  -.  k  =  0 )  -> 
( 1  /  k
)  e.  CC )
3023, 29ifclda 4120 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  if ( k  =  0 ,  0 ,  ( 1  / 
k ) )  e.  CC )
31 expcl 12878 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
3231adantlr 751 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  ( A ^
k )  e.  CC )
3330, 32mulcld 10060 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  ( if ( k  =  0 ,  0 ,  ( 1  /  k ) )  x.  ( A ^
k ) )  e.  CC )
3422, 33eqeltrd 2701 . 2  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN0 )  ->  ( ( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n ) )  x.  ( A ^ n ) ) ) `  k )  e.  CC )
3510recnd 10068 . . . 4  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  e.  CC )
36 absidm 14063 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( abs `  A
) )  =  ( abs `  A ) )
3736adantr 481 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  ( abs `  A ) )  =  ( abs `  A
) )
38 simpr 477 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  <  1 )
3937, 38eqbrtrd 4675 . . . 4  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  ( abs `  A ) )  <  1 )
4035, 39, 8geolim 14601 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  A
) ) ) )
41 seqex 12803 . . . 4  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) ) )  e.  _V
42 ovex 6678 . . . 4  |-  ( 1  /  ( 1  -  ( abs `  A
) ) )  e. 
_V
4341, 42breldm 5329 . . 3  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  A
) ) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) ) )  e.  dom  ~~>  )
4440, 43syl 17 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) ) )  e.  dom  ~~>  )
45 1red 10055 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
1  e.  RR )
46 elnnuz 11724 . . 3  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
47 nnrecre 11057 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
4847adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( 1  / 
k )  e.  RR )
4948recnd 10068 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( 1  / 
k )  e.  CC )
50 nnnn0 11299 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
5150, 32sylan2 491 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( A ^
k )  e.  CC )
5249, 51absmuld 14193 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( abs `  (
( 1  /  k
)  x.  ( A ^ k ) ) )  =  ( ( abs `  ( 1  /  k ) )  x.  ( abs `  ( A ^ k ) ) ) )
53 nnrp 11842 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  RR+ )
5453adantl 482 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  k  e.  RR+ )
5554rpreccld 11882 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( 1  / 
k )  e.  RR+ )
5655rpge0d 11876 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  0  <_  (
1  /  k ) )
5748, 56absidd 14161 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( abs `  (
1  /  k ) )  =  ( 1  /  k ) )
58 simpl 473 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  A  e.  CC )
59 absexp 14044 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
6058, 50, 59syl2an 494 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
6157, 60oveq12d 6668 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( ( abs `  ( 1  /  k
) )  x.  ( abs `  ( A ^
k ) ) )  =  ( ( 1  /  k )  x.  ( ( abs `  A
) ^ k ) ) )
6252, 61eqtrd 2656 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( abs `  (
( 1  /  k
)  x.  ( A ^ k ) ) )  =  ( ( 1  /  k )  x.  ( ( abs `  A ) ^ k
) ) )
63 1red 10055 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  1  e.  RR )
6450, 12sylan2 491 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k
)  e.  RR )
6551absge0d 14183 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  0  <_  ( abs `  ( A ^
k ) ) )
6665, 60breqtrd 4679 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  0  <_  (
( abs `  A
) ^ k ) )
67 nnge1 11046 . . . . . . . . 9  |-  ( k  e.  NN  ->  1  <_  k )
6867adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  1  <_  k
)
69 0lt1 10550 . . . . . . . . . 10  |-  0  <  1
7069a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  0  <  1
)
71 nnre 11027 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR )
7271adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  k  e.  RR )
73 nngt0 11049 . . . . . . . . . 10  |-  ( k  e.  NN  ->  0  <  k )
7473adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  0  <  k
)
75 lerec 10906 . . . . . . . . 9  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( k  e.  RR  /\  0  < 
k ) )  -> 
( 1  <_  k  <->  ( 1  /  k )  <_  ( 1  / 
1 ) ) )
7663, 70, 72, 74, 75syl22anc 1327 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( 1  <_ 
k  <->  ( 1  / 
k )  <_  (
1  /  1 ) ) )
7768, 76mpbid 222 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( 1  / 
k )  <_  (
1  /  1 ) )
78 1div1e1 10717 . . . . . . 7  |-  ( 1  /  1 )  =  1
7977, 78syl6breq 4694 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( 1  / 
k )  <_  1
)
8048, 63, 64, 66, 79lemul1ad 10963 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( ( 1  /  k )  x.  ( ( abs `  A
) ^ k ) )  <_  ( 1  x.  ( ( abs `  A ) ^ k
) ) )
8162, 80eqbrtrd 4675 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( abs `  (
( 1  /  k
)  x.  ( A ^ k ) ) )  <_  ( 1  x.  ( ( abs `  A ) ^ k
) ) )
8250, 22sylan2 491 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n ) )  x.  ( A ^ n ) ) ) `  k )  =  ( if ( k  =  0 ,  0 ,  ( 1  /  k ) )  x.  ( A ^
k ) ) )
83 nnne0 11053 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  =/=  0 )
8483adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  k  =/=  0
)
8584neneqd 2799 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  -.  k  = 
0 )
8685iffalsed 4097 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  if ( k  =  0 ,  0 ,  ( 1  / 
k ) )  =  ( 1  /  k
) )
8786oveq1d 6665 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( if ( k  =  0 ,  0 ,  ( 1  /  k ) )  x.  ( A ^
k ) )  =  ( ( 1  / 
k )  x.  ( A ^ k ) ) )
8882, 87eqtrd 2656 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n ) )  x.  ( A ^ n ) ) ) `  k )  =  ( ( 1  /  k )  x.  ( A ^ k
) ) )
8988fveq2d 6195 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( abs `  (
( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n
) )  x.  ( A ^ n ) ) ) `  k ) )  =  ( abs `  ( ( 1  / 
k )  x.  ( A ^ k ) ) ) )
9050, 8sylan2 491 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) ) `
 k )  =  ( ( abs `  A
) ^ k ) )
9190oveq2d 6666 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( 1  x.  ( ( n  e. 
NN0  |->  ( ( abs `  A ) ^ n
) ) `  k
) )  =  ( 1  x.  ( ( abs `  A ) ^ k ) ) )
9281, 89, 913brtr4d 4685 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( abs `  (
( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n
) )  x.  ( A ^ n ) ) ) `  k ) )  <_  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) ) `
 k ) ) )
9346, 92sylan2br 493 . 2  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  (
ZZ>= `  1 ) )  ->  ( abs `  (
( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n
) )  x.  ( A ^ n ) ) ) `  k ) )  <_  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) ) `
 k ) ) )
941, 3, 13, 34, 44, 45, 93cvgcmpce 14550 1  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( if ( n  =  0 ,  0 ,  ( 1  /  n
) )  x.  ( A ^ n ) ) ) )  e.  dom  ~~>  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   RR+crp 11832    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  logtayl  24406
  Copyright terms: Public domain W3C validator