Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemcvg Structured version   Visualization version   Unicode version

Theorem binomcxplemcvg 38553
Description: Lemma for binomcxp 38556. The sum in binomcxplemnn0 38548 and its derivative (see the next theorem, binomcxplemdvsum 38554) converge, as long as their base  J is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a  |-  ( ph  ->  A  e.  RR+ )
binomcxp.b  |-  ( ph  ->  B  e.  RR )
binomcxp.lt  |-  ( ph  ->  ( abs `  B
)  <  ( abs `  A ) )
binomcxp.c  |-  ( ph  ->  C  e.  CC )
binomcxplem.f  |-  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) )
binomcxplem.s  |-  S  =  ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
binomcxplem.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
binomcxplem.e  |-  E  =  ( b  e.  CC  |->  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) ) )
binomcxplem.d  |-  D  =  ( `' abs " (
0 [,) R ) )
Assertion
Ref Expression
binomcxplemcvg  |-  ( (
ph  /\  J  e.  D )  ->  (  seq 0 (  +  , 
( S `  J
) )  e.  dom  ~~>  /\ 
seq 1 (  +  ,  ( E `  J ) )  e. 
dom 
~~>  ) )
Distinct variable groups:    k, b, ph    F, b, k    J, b, k    r, b, J    ph, j    S, r
Allowed substitution hints:    ph( r)    A( j, k, r, b)    B( j, k, r, b)    C( j, k, r, b)    D( j, k, r, b)    R( j, k, r, b)    S( j, k, b)    E( j, k, r, b)    F( j, r)    J( j)

Proof of Theorem binomcxplemcvg
StepHypRef Expression
1 binomcxplem.s . . 3  |-  S  =  ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
2 binomcxp.c . . . . . . 7  |-  ( ph  ->  C  e.  CC )
32adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  C  e.  CC )
4 simpr 477 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
53, 4bcccl 38538 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( CC𝑐 j
)  e.  CC )
6 binomcxplem.f . . . . 5  |-  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) )
75, 6fmptd 6385 . . . 4  |-  ( ph  ->  F : NN0 --> CC )
87adantr 481 . . 3  |-  ( (
ph  /\  J  e.  D )  ->  F : NN0 --> CC )
9 binomcxplem.r . . 3  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
10 binomcxplem.d . . . . . . 7  |-  D  =  ( `' abs " (
0 [,) R ) )
1110eleq2i 2693 . . . . . 6  |-  ( J  e.  D  <->  J  e.  ( `' abs " ( 0 [,) R ) ) )
12 absf 14077 . . . . . . 7  |-  abs : CC
--> RR
13 ffn 6045 . . . . . . 7  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
14 elpreima 6337 . . . . . . 7  |-  ( abs 
Fn  CC  ->  ( J  e.  ( `' abs " ( 0 [,) R
) )  <->  ( J  e.  CC  /\  ( abs `  J )  e.  ( 0 [,) R ) ) ) )
1512, 13, 14mp2b 10 . . . . . 6  |-  ( J  e.  ( `' abs " ( 0 [,) R
) )  <->  ( J  e.  CC  /\  ( abs `  J )  e.  ( 0 [,) R ) ) )
1611, 15bitri 264 . . . . 5  |-  ( J  e.  D  <->  ( J  e.  CC  /\  ( abs `  J )  e.  ( 0 [,) R ) ) )
1716simplbi 476 . . . 4  |-  ( J  e.  D  ->  J  e.  CC )
1817adantl 482 . . 3  |-  ( (
ph  /\  J  e.  D )  ->  J  e.  CC )
1916simprbi 480 . . . . 5  |-  ( J  e.  D  ->  ( abs `  J )  e.  ( 0 [,) R
) )
20 0re 10040 . . . . . . 7  |-  0  e.  RR
21 ssrab2 3687 . . . . . . . . . 10  |-  { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } 
C_  RR
22 ressxr 10083 . . . . . . . . . 10  |-  RR  C_  RR*
2321, 22sstri 3612 . . . . . . . . 9  |-  { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } 
C_  RR*
24 supxrcl 12145 . . . . . . . . 9  |-  ( { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } 
C_  RR*  ->  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( S `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  e.  RR* )
2523, 24ax-mp 5 . . . . . . . 8  |-  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( S `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  e.  RR*
269, 25eqeltri 2697 . . . . . . 7  |-  R  e. 
RR*
27 elico2 12237 . . . . . . 7  |-  ( ( 0  e.  RR  /\  R  e.  RR* )  -> 
( ( abs `  J
)  e.  ( 0 [,) R )  <->  ( ( abs `  J )  e.  RR  /\  0  <_ 
( abs `  J
)  /\  ( abs `  J )  <  R
) ) )
2820, 26, 27mp2an 708 . . . . . 6  |-  ( ( abs `  J )  e.  ( 0 [,) R )  <->  ( ( abs `  J )  e.  RR  /\  0  <_ 
( abs `  J
)  /\  ( abs `  J )  <  R
) )
2928simp3bi 1078 . . . . 5  |-  ( ( abs `  J )  e.  ( 0 [,) R )  ->  ( abs `  J )  < 
R )
3019, 29syl 17 . . . 4  |-  ( J  e.  D  ->  ( abs `  J )  < 
R )
3130adantl 482 . . 3  |-  ( (
ph  /\  J  e.  D )  ->  ( abs `  J )  < 
R )
321, 8, 9, 18, 31radcnvlt2 24173 . 2  |-  ( (
ph  /\  J  e.  D )  ->  seq 0 (  +  , 
( S `  J
) )  e.  dom  ~~>  )
33 binomcxplem.e . . . . . . 7  |-  E  =  ( b  e.  CC  |->  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) ) )
3433a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  CC )  ->  E  =  ( b  e.  CC  |->  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) ) ) )
35 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ph  /\  J  e.  CC )  /\  b  =  J
)  /\  k  e.  NN )  ->  b  =  J )
3635oveq1d 6665 . . . . . . . 8  |-  ( ( ( ( ph  /\  J  e.  CC )  /\  b  =  J
)  /\  k  e.  NN )  ->  ( b ^ ( k  - 
1 ) )  =  ( J ^ (
k  -  1 ) ) )
3736oveq2d 6666 . . . . . . 7  |-  ( ( ( ( ph  /\  J  e.  CC )  /\  b  =  J
)  /\  k  e.  NN )  ->  ( ( k  x.  ( F `
 k ) )  x.  ( b ^
( k  -  1 ) ) )  =  ( ( k  x.  ( F `  k
) )  x.  ( J ^ ( k  - 
1 ) ) ) )
3837mpteq2dva 4744 . . . . . 6  |-  ( ( ( ph  /\  J  e.  CC )  /\  b  =  J )  ->  (
k  e.  NN  |->  ( ( k  x.  ( F `  k )
)  x.  ( b ^ ( k  - 
1 ) ) ) )  =  ( k  e.  NN  |->  ( ( k  x.  ( F `
 k ) )  x.  ( J ^
( k  -  1 ) ) ) ) )
39 simpr 477 . . . . . 6  |-  ( (
ph  /\  J  e.  CC )  ->  J  e.  CC )
40 nnex 11026 . . . . . . . 8  |-  NN  e.  _V
4140mptex 6486 . . . . . . 7  |-  ( k  e.  NN  |->  ( ( k  x.  ( F `
 k ) )  x.  ( J ^
( k  -  1 ) ) ) )  e.  _V
4241a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  CC )  ->  ( k  e.  NN  |->  ( ( k  x.  ( F `
 k ) )  x.  ( J ^
( k  -  1 ) ) ) )  e.  _V )
4334, 38, 39, 42fvmptd 6288 . . . . 5  |-  ( (
ph  /\  J  e.  CC )  ->  ( E `
 J )  =  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  ( J ^ ( k  - 
1 ) ) ) ) )
4417, 43sylan2 491 . . . 4  |-  ( (
ph  /\  J  e.  D )  ->  ( E `  J )  =  ( k  e.  NN  |->  ( ( k  x.  ( F `  k ) )  x.  ( J ^ (
k  -  1 ) ) ) ) )
4544seqeq3d 12809 . . 3  |-  ( (
ph  /\  J  e.  D )  ->  seq 1 (  +  , 
( E `  J
) )  =  seq 1 (  +  , 
( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  ( J ^ ( k  - 
1 ) ) ) ) ) )
46 eqid 2622 . . . 4  |-  ( k  e.  NN  |->  ( ( k  x.  ( F `
 k ) )  x.  ( J ^
( k  -  1 ) ) ) )  =  ( k  e.  NN  |->  ( ( k  x.  ( F `  k ) )  x.  ( J ^ (
k  -  1 ) ) ) )
471, 9, 46, 8, 18, 31dvradcnv2 38546 . . 3  |-  ( (
ph  /\  J  e.  D )  ->  seq 1 (  +  , 
( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  ( J ^ ( k  - 
1 ) ) ) ) )  e.  dom  ~~>  )
4845, 47eqeltrd 2701 . 2  |-  ( (
ph  /\  J  e.  D )  ->  seq 1 (  +  , 
( E `  J
) )  e.  dom  ~~>  )
4932, 48jca 554 1  |-  ( (
ph  /\  J  e.  D )  ->  (  seq 0 (  +  , 
( S `  J
) )  e.  dom  ~~>  /\ 
seq 1 (  +  ,  ( E `  J ) )  e. 
dom 
~~>  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   RR+crp 11832   [,)cico 12177    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215  C𝑐cbcc 38535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-fallfac 14738  df-bcc 38536
This theorem is referenced by:  binomcxplemnotnn0  38555
  Copyright terms: Public domain W3C validator