Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvbinom Structured version   Visualization version   Unicode version

Theorem binomcxplemdvbinom 38552
Description: Lemma for binomcxp 38556. By the power and chain rules, calculate the derivative of  ( ( 1  +  b )  ^c  -u C ), with respect to  b in the disk of convergence 
D. We later multiply the derivative in the later binomcxplemdvsum 38554 by this derivative to show that  ( ( 1  +  b )  ^c  C ) (with a non-negated  C) and the later sum, since both at  b  =  0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a  |-  ( ph  ->  A  e.  RR+ )
binomcxp.b  |-  ( ph  ->  B  e.  RR )
binomcxp.lt  |-  ( ph  ->  ( abs `  B
)  <  ( abs `  A ) )
binomcxp.c  |-  ( ph  ->  C  e.  CC )
binomcxplem.f  |-  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) )
binomcxplem.s  |-  S  =  ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
binomcxplem.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
binomcxplem.e  |-  E  =  ( b  e.  CC  |->  ( k  e.  NN  |->  ( ( k  x.  ( F `  k
) )  x.  (
b ^ ( k  -  1 ) ) ) ) )
binomcxplem.d  |-  D  =  ( `' abs " (
0 [,) R ) )
Assertion
Ref Expression
binomcxplemdvbinom  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( b  e.  D  |->  ( ( 1  +  b )  ^c  -u C ) ) )  =  ( b  e.  D  |->  ( -u C  x.  ( (
1  +  b )  ^c  ( -u C  -  1 ) ) ) ) )
Distinct variable groups:    j, k, ph    k, b, C    C, j    F, b, k    S, r    r, b
Allowed substitution hints:    ph( r, b)    A( j, k, r, b)    B( j, k, r, b)    C( r)    D( j, k, r, b)    R( j, k, r, b)    S( j, k, b)    E( j, k, r, b)    F( j, r)

Proof of Theorem binomcxplemdvbinom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.d . . . . 5  |-  D  =  ( `' abs " (
0 [,) R ) )
2 nfcv 2764 . . . . . 6  |-  F/_ b `' abs
3 nfcv 2764 . . . . . . 7  |-  F/_ b
0
4 nfcv 2764 . . . . . . 7  |-  F/_ b [,)
5 binomcxplem.r . . . . . . . 8  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
6 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ b  +
7 binomcxplem.s . . . . . . . . . . . . . 14  |-  S  =  ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
8 nfmpt1 4747 . . . . . . . . . . . . . 14  |-  F/_ b
( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
97, 8nfcxfr 2762 . . . . . . . . . . . . 13  |-  F/_ b S
10 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ b
r
119, 10nffv 6198 . . . . . . . . . . . 12  |-  F/_ b
( S `  r
)
123, 6, 11nfseq 12811 . . . . . . . . . . 11  |-  F/_ b  seq 0 (  +  , 
( S `  r
) )
1312nfel1 2779 . . . . . . . . . 10  |-  F/ b  seq 0 (  +  ,  ( S `  r ) )  e. 
dom 
~~>
14 nfcv 2764 . . . . . . . . . 10  |-  F/_ b RR
1513, 14nfrab 3123 . . . . . . . . 9  |-  F/_ b { r  e.  RR  |  seq 0 (  +  ,  ( S `  r ) )  e. 
dom 
~~>  }
16 nfcv 2764 . . . . . . . . 9  |-  F/_ b RR*
17 nfcv 2764 . . . . . . . . 9  |-  F/_ b  <
1815, 16, 17nfsup 8357 . . . . . . . 8  |-  F/_ b sup ( { r  e.  RR  |  seq 0
(  +  ,  ( S `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  )
195, 18nfcxfr 2762 . . . . . . 7  |-  F/_ b R
203, 4, 19nfov 6676 . . . . . 6  |-  F/_ b
( 0 [,) R
)
212, 20nfima 5474 . . . . 5  |-  F/_ b
( `' abs " (
0 [,) R ) )
221, 21nfcxfr 2762 . . . 4  |-  F/_ b D
23 nfcv 2764 . . . 4  |-  F/_ y D
24 nfcv 2764 . . . 4  |-  F/_ y
( ( 1  +  b )  ^c  -u C )
25 nfcv 2764 . . . 4  |-  F/_ b
( ( 1  +  y )  ^c  -u C )
26 oveq2 6658 . . . . 5  |-  ( b  =  y  ->  (
1  +  b )  =  ( 1  +  y ) )
2726oveq1d 6665 . . . 4  |-  ( b  =  y  ->  (
( 1  +  b )  ^c  -u C )  =  ( ( 1  +  y )  ^c  -u C ) )
2822, 23, 24, 25, 27cbvmptf 4748 . . 3  |-  ( b  e.  D  |->  ( ( 1  +  b )  ^c  -u C
) )  =  ( y  e.  D  |->  ( ( 1  +  y )  ^c  -u C ) )
2928oveq2i 6661 . 2  |-  ( CC 
_D  ( b  e.  D  |->  ( ( 1  +  b )  ^c  -u C ) ) )  =  ( CC 
_D  ( y  e.  D  |->  ( ( 1  +  y )  ^c  -u C ) ) )
30 cnelprrecn 10029 . . . . 5  |-  CC  e.  { RR ,  CC }
3130a1i 11 . . . 4  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  CC  e.  { RR ,  CC } )
32 1cnd 10056 . . . . . 6  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  1  e.  CC )
33 cnvimass 5485 . . . . . . . . . 10  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
341, 33eqsstri 3635 . . . . . . . . 9  |-  D  C_  dom  abs
35 absf 14077 . . . . . . . . . 10  |-  abs : CC
--> RR
3635fdmi 6052 . . . . . . . . 9  |-  dom  abs  =  CC
3734, 36sseqtri 3637 . . . . . . . 8  |-  D  C_  CC
3837a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  D  C_  CC )
3938sselda 3603 . . . . . 6  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  y  e.  CC )
4032, 39addcld 10059 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  ( 1  +  y )  e.  CC )
41 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  ( 1  +  y )  e.  RR )  ->  (
1  +  y )  e.  RR )
42 1cnd 10056 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  ( 1  +  y )  e.  RR )  ->  1  e.  CC )
4339adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  ( 1  +  y )  e.  RR )  ->  y  e.  CC )
4442, 43pncan2d 10394 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  ( 1  +  y )  e.  RR )  ->  (
( 1  +  y )  -  1 )  =  y )
45 1red 10055 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  ( 1  +  y )  e.  RR )  ->  1  e.  RR )
4641, 45resubcld 10458 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  ( 1  +  y )  e.  RR )  ->  (
( 1  +  y )  -  1 )  e.  RR )
4744, 46eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  ( 1  +  y )  e.  RR )  ->  y  e.  RR )
48 1pneg1e0 11129 . . . . . . . . 9  |-  ( 1  +  -u 1 )  =  0
49 1red 10055 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  y  e.  RR )  ->  1  e.  RR )
5049renegcld 10457 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  y  e.  RR )  ->  -u 1  e.  RR )
51 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  y  e.  RR )  ->  y  e.  RR )
52 ffn 6045 . . . . . . . . . . . . . . . . . . . 20  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
53 elpreima 6337 . . . . . . . . . . . . . . . . . . . 20  |-  ( abs 
Fn  CC  ->  ( y  e.  ( `' abs " ( 0 [,) R
) )  <->  ( y  e.  CC  /\  ( abs `  y )  e.  ( 0 [,) R ) ) ) )
5435, 52, 53mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( `' abs " ( 0 [,) R
) )  <->  ( y  e.  CC  /\  ( abs `  y )  e.  ( 0 [,) R ) ) )
5554simprbi 480 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( `' abs " ( 0 [,) R
) )  ->  ( abs `  y )  e.  ( 0 [,) R
) )
5655, 1eleq2s 2719 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  D  ->  ( abs `  y )  e.  ( 0 [,) R
) )
57 0re 10040 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
58 ssrab2 3687 . . . . . . . . . . . . . . . . . . . . 21  |-  { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } 
C_  RR
59 ressxr 10083 . . . . . . . . . . . . . . . . . . . . 21  |-  RR  C_  RR*
6058, 59sstri 3612 . . . . . . . . . . . . . . . . . . . 20  |-  { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } 
C_  RR*
61 supxrcl 12145 . . . . . . . . . . . . . . . . . . . 20  |-  ( { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } 
C_  RR*  ->  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( S `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  e.  RR* )
6260, 61ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( S `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  e.  RR*
635, 62eqeltri 2697 . . . . . . . . . . . . . . . . . 18  |-  R  e. 
RR*
64 elico2 12237 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  R  e.  RR* )  -> 
( ( abs `  y
)  e.  ( 0 [,) R )  <->  ( ( abs `  y )  e.  RR  /\  0  <_ 
( abs `  y
)  /\  ( abs `  y )  <  R
) ) )
6557, 63, 64mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( ( abs `  y )  e.  ( 0 [,) R )  <->  ( ( abs `  y )  e.  RR  /\  0  <_ 
( abs `  y
)  /\  ( abs `  y )  <  R
) )
6656, 65sylib 208 . . . . . . . . . . . . . . . 16  |-  ( y  e.  D  ->  (
( abs `  y
)  e.  RR  /\  0  <_  ( abs `  y
)  /\  ( abs `  y )  <  R
) )
6766simp3d 1075 . . . . . . . . . . . . . . 15  |-  ( y  e.  D  ->  ( abs `  y )  < 
R )
6867adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  ( abs `  y
)  <  R )
69 binomcxp.a . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  RR+ )
70 binomcxp.b . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  RR )
71 binomcxp.lt . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( abs `  B
)  <  ( abs `  A ) )
72 binomcxp.c . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  CC )
73 binomcxplem.f . . . . . . . . . . . . . . . 16  |-  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) )
7469, 70, 71, 72, 73, 7, 5binomcxplemradcnv 38551 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  R  =  1 )
7574adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  R  =  1 )
7668, 75breqtrd 4679 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  ( abs `  y
)  <  1 )
7776adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  y  e.  RR )  ->  ( abs `  y )  <  1
)
7851, 49absltd 14168 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  y  e.  RR )  ->  ( ( abs `  y )  <  1  <->  ( -u 1  <  y  /\  y  <  1 ) ) )
7977, 78mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  y  e.  RR )  ->  ( -u
1  <  y  /\  y  <  1 ) )
8079simpld 475 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  y  e.  RR )  ->  -u 1  <  y )
8150, 51, 49, 80ltadd2dd 10196 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  y  e.  RR )  ->  ( 1  +  -u 1 )  < 
( 1  +  y ) )
8248, 81syl5eqbrr 4689 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  y  e.  RR )  ->  0  < 
( 1  +  y ) )
8347, 82syldan 487 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  ( 1  +  y )  e.  RR )  ->  0  <  ( 1  +  y ) )
8441, 83elrpd 11869 . . . . . 6  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D
)  /\  ( 1  +  y )  e.  RR )  ->  (
1  +  y )  e.  RR+ )
8584ex 450 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  ( ( 1  +  y )  e.  RR  ->  ( 1  +  y )  e.  RR+ )
)
86 eqid 2622 . . . . . 6  |-  ( CC 
\  ( -oo (,] 0 ) )  =  ( CC  \  ( -oo (,] 0 ) )
8786ellogdm 24385 . . . . 5  |-  ( ( 1  +  y )  e.  ( CC  \ 
( -oo (,] 0 ) )  <->  ( ( 1  +  y )  e.  CC  /\  ( ( 1  +  y )  e.  RR  ->  (
1  +  y )  e.  RR+ ) ) )
8840, 85, 87sylanbrc 698 . . . 4  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  ( 1  +  y )  e.  ( CC 
\  ( -oo (,] 0 ) ) )
89 eldifi 3732 . . . . . 6  |-  ( x  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  x  e.  CC )
9089adantl 482 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  x  e.  ( CC  \  ( -oo (,] 0
) ) )  ->  x  e.  CC )
9172adantr 481 . . . . . . 7  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  C  e.  CC )
9291negcld 10379 . . . . . 6  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  -u C  e.  CC )
9392adantr 481 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  x  e.  ( CC  \  ( -oo (,] 0
) ) )  ->  -u C  e.  CC )
9490, 93cxpcld 24454 . . . 4  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  x  e.  ( CC  \  ( -oo (,] 0
) ) )  -> 
( x  ^c  -u C )  e.  CC )
95 ovexd 6680 . . . 4  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  x  e.  ( CC  \  ( -oo (,] 0
) ) )  -> 
( -u C  x.  (
x  ^c  (
-u C  -  1 ) ) )  e. 
_V )
96 1cnd 10056 . . . . . . 7  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  x  e.  CC )  ->  1  e.  CC )
97 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  x  e.  CC )  ->  x  e.  CC )
9896, 97addcld 10059 . . . . . 6  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  x  e.  CC )  ->  ( 1  +  x
)  e.  CC )
99 c0ex 10034 . . . . . . . . 9  |-  0  e.  _V
10099a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  x  e.  CC )  ->  0  e.  _V )
101 1cnd 10056 . . . . . . . . 9  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  1  e.  CC )
10231, 101dvmptc 23721 . . . . . . . 8  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( x  e.  CC  |->  1 ) )  =  ( x  e.  CC  |->  0 ) )
10331dvmptid 23720 . . . . . . . 8  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 ) )
10431, 96, 100, 102, 97, 96, 103dvmptadd 23723 . . . . . . 7  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( x  e.  CC  |->  ( 1  +  x ) ) )  =  ( x  e.  CC  |->  ( 0  +  1 ) ) )
105 0p1e1 11132 . . . . . . . 8  |-  ( 0  +  1 )  =  1
106105mpteq2i 4741 . . . . . . 7  |-  ( x  e.  CC  |->  ( 0  +  1 ) )  =  ( x  e.  CC  |->  1 )
107104, 106syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( x  e.  CC  |->  ( 1  +  x ) ) )  =  ( x  e.  CC  |->  1 ) )
108 fvex 6201 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  _V
109 cnfldtps 22581 . . . . . . . . . 10  |-fld  e.  TopSp
110 cnfldbas 19750 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
111 eqid 2622 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
112110, 111tpsuni 20740 . . . . . . . . . 10  |-  (fld  e.  TopSp  ->  CC  =  U. ( TopOpen
` fld
) )
113109, 112ax-mp 5 . . . . . . . . 9  |-  CC  =  U. ( TopOpen ` fld )
114113restid 16094 . . . . . . . 8  |-  ( (
TopOpen ` fld )  e.  _V  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
115108, 114ax-mp 5 . . . . . . 7  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
116115eqcomi 2631 . . . . . 6  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
117111cnfldtop 22587 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  Top
118 eqid 2622 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
119118cnbl0 22577 . . . . . . . . . . 11  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,) R ) )  =  ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )
12063, 119ax-mp 5 . . . . . . . . . 10  |-  ( `' abs " ( 0 [,) R ) )  =  ( 0 (
ball `  ( abs  o. 
-  ) ) R )
1211, 120eqtri 2644 . . . . . . . . 9  |-  D  =  ( 0 ( ball `  ( abs  o.  -  ) ) R )
122 cnxmet 22576 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
123 0cn 10032 . . . . . . . . . 10  |-  0  e.  CC
124111cnfldtopn 22585 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
125124blopn 22305 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  e.  (
TopOpen ` fld ) )
126122, 123, 63, 125mp3an 1424 . . . . . . . . 9  |-  ( 0 ( ball `  ( abs  o.  -  ) ) R )  e.  (
TopOpen ` fld )
127121, 126eqeltri 2697 . . . . . . . 8  |-  D  e.  ( TopOpen ` fld )
128 isopn3i 20886 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  D  e.  ( TopOpen ` fld )
)  ->  ( ( int `  ( TopOpen ` fld ) ) `  D
)  =  D )
129117, 127, 128mp2an 708 . . . . . . 7  |-  ( ( int `  ( TopOpen ` fld )
) `  D )  =  D
130129a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  (
( int `  ( TopOpen
` fld
) ) `  D
)  =  D )
13131, 98, 96, 107, 38, 116, 111, 130dvmptres2 23725 . . . . 5  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( x  e.  D  |->  ( 1  +  x ) ) )  =  ( x  e.  D  |->  1 ) )
132 oveq2 6658 . . . . . . 7  |-  ( x  =  y  ->  (
1  +  x )  =  ( 1  +  y ) )
133132cbvmptv 4750 . . . . . 6  |-  ( x  e.  D  |->  ( 1  +  x ) )  =  ( y  e.  D  |->  ( 1  +  y ) )
134133oveq2i 6661 . . . . 5  |-  ( CC 
_D  ( x  e.  D  |->  ( 1  +  x ) ) )  =  ( CC  _D  ( y  e.  D  |->  ( 1  +  y ) ) )
135 eqidd 2623 . . . . . 6  |-  ( x  =  y  ->  1  =  1 )
136135cbvmptv 4750 . . . . 5  |-  ( x  e.  D  |->  1 )  =  ( y  e.  D  |->  1 )
137131, 134, 1363eqtr3g 2679 . . . 4  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( y  e.  D  |->  ( 1  +  y ) ) )  =  ( y  e.  D  |->  1 ) )
13886dvcncxp1 24484 . . . . 5  |-  ( -u C  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \ 
( -oo (,] 0 ) )  |->  ( x  ^c  -u C ) ) )  =  ( x  e.  ( CC  \ 
( -oo (,] 0 ) )  |->  ( -u C  x.  ( x  ^c 
( -u C  -  1 ) ) ) ) )
13992, 138syl 17 . . . 4  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( x  e.  ( CC  \  ( -oo (,] 0 ) ) 
|->  ( x  ^c  -u C ) ) )  =  ( x  e.  ( CC  \  ( -oo (,] 0 ) ) 
|->  ( -u C  x.  ( x  ^c 
( -u C  -  1 ) ) ) ) )
140 oveq1 6657 . . . 4  |-  ( x  =  ( 1  +  y )  ->  (
x  ^c  -u C )  =  ( ( 1  +  y )  ^c  -u C ) )
141 oveq1 6657 . . . . 5  |-  ( x  =  ( 1  +  y )  ->  (
x  ^c  (
-u C  -  1 ) )  =  ( ( 1  +  y )  ^c  (
-u C  -  1 ) ) )
142141oveq2d 6666 . . . 4  |-  ( x  =  ( 1  +  y )  ->  ( -u C  x.  ( x  ^c  ( -u C  -  1 ) ) )  =  (
-u C  x.  (
( 1  +  y )  ^c  (
-u C  -  1 ) ) ) )
14331, 31, 88, 32, 94, 95, 137, 139, 140, 142dvmptco 23735 . . 3  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( y  e.  D  |->  ( ( 1  +  y )  ^c  -u C ) ) )  =  ( y  e.  D  |->  ( (
-u C  x.  (
( 1  +  y )  ^c  (
-u C  -  1 ) ) )  x.  1 ) ) )
14491adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  C  e.  CC )
145144negcld 10379 . . . . . 6  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  -> 
-u C  e.  CC )
146145, 32subcld 10392 . . . . . . 7  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  ( -u C  - 
1 )  e.  CC )
14740, 146cxpcld 24454 . . . . . 6  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  ( ( 1  +  y )  ^c 
( -u C  -  1 ) )  e.  CC )
148145, 147mulcld 10060 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  ( -u C  x.  ( ( 1  +  y )  ^c 
( -u C  -  1 ) ) )  e.  CC )
149148mulid1d 10057 . . . 4  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  y  e.  D )  ->  ( ( -u C  x.  ( ( 1  +  y )  ^c 
( -u C  -  1 ) ) )  x.  1 )  =  (
-u C  x.  (
( 1  +  y )  ^c  (
-u C  -  1 ) ) ) )
150149mpteq2dva 4744 . . 3  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  (
y  e.  D  |->  ( ( -u C  x.  ( ( 1  +  y )  ^c 
( -u C  -  1 ) ) )  x.  1 ) )  =  ( y  e.  D  |->  ( -u C  x.  ( ( 1  +  y )  ^c 
( -u C  -  1 ) ) ) ) )
151 nfcv 2764 . . . . 5  |-  F/_ b
( -u C  x.  (
( 1  +  y )  ^c  (
-u C  -  1 ) ) )
152 nfcv 2764 . . . . 5  |-  F/_ y
( -u C  x.  (
( 1  +  b )  ^c  (
-u C  -  1 ) ) )
153 oveq2 6658 . . . . . . 7  |-  ( y  =  b  ->  (
1  +  y )  =  ( 1  +  b ) )
154153oveq1d 6665 . . . . . 6  |-  ( y  =  b  ->  (
( 1  +  y )  ^c  (
-u C  -  1 ) )  =  ( ( 1  +  b )  ^c  (
-u C  -  1 ) ) )
155154oveq2d 6666 . . . . 5  |-  ( y  =  b  ->  ( -u C  x.  ( ( 1  +  y )  ^c  ( -u C  -  1 ) ) )  =  (
-u C  x.  (
( 1  +  b )  ^c  (
-u C  -  1 ) ) ) )
15623, 22, 151, 152, 155cbvmptf 4748 . . . 4  |-  ( y  e.  D  |->  ( -u C  x.  ( (
1  +  y )  ^c  ( -u C  -  1 ) ) ) )  =  ( b  e.  D  |->  ( -u C  x.  ( ( 1  +  b )  ^c 
( -u C  -  1 ) ) ) )
157156a1i 11 . . 3  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  (
y  e.  D  |->  (
-u C  x.  (
( 1  +  y )  ^c  (
-u C  -  1 ) ) ) )  =  ( b  e.  D  |->  ( -u C  x.  ( ( 1  +  b )  ^c 
( -u C  -  1 ) ) ) ) )
158143, 150, 1573eqtrd 2660 . 2  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( y  e.  D  |->  ( ( 1  +  y )  ^c  -u C ) ) )  =  ( b  e.  D  |->  ( -u C  x.  ( (
1  +  b )  ^c  ( -u C  -  1 ) ) ) ) )
15929, 158syl5eq 2668 1  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  ( CC  _D  ( b  e.  D  |->  ( ( 1  +  b )  ^c  -u C ) ) )  =  ( b  e.  D  |->  ( -u C  x.  ( (
1  +  b )  ^c  ( -u C  -  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {cpr 4179   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   NN0cn0 11292   RR+crp 11832   (,]cioc 12176   [,)cico 12177    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   ↾t crest 16081   TopOpenctopn 16082   *Metcxmt 19731   ballcbl 19733  ℂfldccnfld 19746   Topctop 20698   TopSpctps 20736   intcnt 20821    _D cdv 23627    ^c ccxp 24302  C𝑐cbcc 38535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-fallfac 14738  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-bcc 38536
This theorem is referenced by:  binomcxplemnotnn0  38555
  Copyright terms: Public domain W3C validator