| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chtnprm | Structured version Visualization version Unicode version | ||
| Description: The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.) |
| Ref | Expression |
|---|---|
| chtnprm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3834 |
. . . . . . . . . . . . 13
| |
| 2 | simprr 796 |
. . . . . . . . . . . . 13
| |
| 3 | 1, 2 | sseldi 3601 |
. . . . . . . . . . . 12
|
| 4 | simprl 794 |
. . . . . . . . . . . 12
| |
| 5 | nelne2 2891 |
. . . . . . . . . . . 12
| |
| 6 | 3, 4, 5 | syl2anc 693 |
. . . . . . . . . . 11
|
| 7 | velsn 4193 |
. . . . . . . . . . . 12
| |
| 8 | 7 | necon3bbii 2841 |
. . . . . . . . . . 11
|
| 9 | 6, 8 | sylibr 224 |
. . . . . . . . . 10
|
| 10 | inss1 3833 |
. . . . . . . . . . . . . 14
| |
| 11 | 10, 2 | sseldi 3601 |
. . . . . . . . . . . . 13
|
| 12 | 2z 11409 |
. . . . . . . . . . . . . 14
| |
| 13 | zcn 11382 |
. . . . . . . . . . . . . . . . . 18
| |
| 14 | 13 | adantr 481 |
. . . . . . . . . . . . . . . . 17
|
| 15 | ax-1cn 9994 |
. . . . . . . . . . . . . . . . 17
| |
| 16 | pncan 10287 |
. . . . . . . . . . . . . . . . 17
| |
| 17 | 14, 15, 16 | sylancl 694 |
. . . . . . . . . . . . . . . 16
|
| 18 | elfzuz2 12346 |
. . . . . . . . . . . . . . . . 17
| |
| 19 | uz2m1nn 11763 |
. . . . . . . . . . . . . . . . 17
| |
| 20 | 11, 18, 19 | 3syl 18 |
. . . . . . . . . . . . . . . 16
|
| 21 | 17, 20 | eqeltrrd 2702 |
. . . . . . . . . . . . . . 15
|
| 22 | nnuz 11723 |
. . . . . . . . . . . . . . . 16
| |
| 23 | 2m1e1 11135 |
. . . . . . . . . . . . . . . . 17
| |
| 24 | 23 | fveq2i 6194 |
. . . . . . . . . . . . . . . 16
|
| 25 | 22, 24 | eqtr4i 2647 |
. . . . . . . . . . . . . . 15
|
| 26 | 21, 25 | syl6eleq 2711 |
. . . . . . . . . . . . . 14
|
| 27 | fzsuc2 12398 |
. . . . . . . . . . . . . 14
| |
| 28 | 12, 26, 27 | sylancr 695 |
. . . . . . . . . . . . 13
|
| 29 | 11, 28 | eleqtrd 2703 |
. . . . . . . . . . . 12
|
| 30 | elun 3753 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | sylib 208 |
. . . . . . . . . . 11
|
| 32 | 31 | ord 392 |
. . . . . . . . . 10
|
| 33 | 9, 32 | mt3d 140 |
. . . . . . . . 9
|
| 34 | 33, 3 | elind 3798 |
. . . . . . . 8
|
| 35 | 34 | expr 643 |
. . . . . . 7
|
| 36 | 35 | ssrdv 3609 |
. . . . . 6
|
| 37 | uzid 11702 |
. . . . . . . 8
| |
| 38 | 37 | adantr 481 |
. . . . . . 7
|
| 39 | peano2uz 11741 |
. . . . . . 7
| |
| 40 | fzss2 12381 |
. . . . . . 7
| |
| 41 | ssrin 3838 |
. . . . . . 7
| |
| 42 | 38, 39, 40, 41 | 4syl 19 |
. . . . . 6
|
| 43 | 36, 42 | eqssd 3620 |
. . . . 5
|
| 44 | peano2z 11418 |
. . . . . . . . 9
| |
| 45 | 44 | adantr 481 |
. . . . . . . 8
|
| 46 | flid 12609 |
. . . . . . . 8
| |
| 47 | 45, 46 | syl 17 |
. . . . . . 7
|
| 48 | 47 | oveq2d 6666 |
. . . . . 6
|
| 49 | 48 | ineq1d 3813 |
. . . . 5
|
| 50 | flid 12609 |
. . . . . . . 8
| |
| 51 | 50 | adantr 481 |
. . . . . . 7
|
| 52 | 51 | oveq2d 6666 |
. . . . . 6
|
| 53 | 52 | ineq1d 3813 |
. . . . 5
|
| 54 | 43, 49, 53 | 3eqtr4d 2666 |
. . . 4
|
| 55 | zre 11381 |
. . . . . 6
| |
| 56 | 55 | adantr 481 |
. . . . 5
|
| 57 | peano2re 10209 |
. . . . 5
| |
| 58 | ppisval 24830 |
. . . . 5
| |
| 59 | 56, 57, 58 | 3syl 18 |
. . . 4
|
| 60 | ppisval 24830 |
. . . . 5
| |
| 61 | 56, 60 | syl 17 |
. . . 4
|
| 62 | 54, 59, 61 | 3eqtr4d 2666 |
. . 3
|
| 63 | 62 | sumeq1d 14431 |
. 2
|
| 64 | chtval 24836 |
. . 3
| |
| 65 | 56, 57, 64 | 3syl 18 |
. 2
|
| 66 | chtval 24836 |
. . 3
| |
| 67 | 56, 66 | syl 17 |
. 2
|
| 68 | 63, 65, 67 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-icc 12182 df-fz 12327 df-fl 12593 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-sum 14417 df-dvds 14984 df-prm 15386 df-cht 24823 |
| This theorem is referenced by: chtub 24937 |
| Copyright terms: Public domain | W3C validator |