Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncficcgt0 Structured version   Visualization version   Unicode version

Theorem cncficcgt0 40101
Description: A the absolute value of a continuous function on a closed interval, that is never 0, has a strictly positive lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncficcgt0.f  |-  F  =  ( x  e.  ( A [,] B ) 
|->  C )
cncficcgt0.a  |-  ( ph  ->  A  e.  RR )
cncficcgt0.b  |-  ( ph  ->  B  e.  RR )
cncficcgt0.aleb  |-  ( ph  ->  A  <_  B )
cncficcgt0.fcn  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> ( RR  \  {
0 } ) ) )
Assertion
Ref Expression
cncficcgt0  |-  ( ph  ->  E. y  e.  RR+  A. x  e.  ( A [,] B ) y  <_  ( abs `  C
) )
Distinct variable groups:    x, A, y    x, B, y    y, C    y, F    ph, x
Allowed substitution hints:    ph( y)    C( x)    F( x)

Proof of Theorem cncficcgt0
Dummy variables  a 
b  c  d  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncficcgt0.fcn . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> ( RR  \  {
0 } ) ) )
2 cncff 22696 . . . . . . . 8  |-  ( F  e.  ( ( A [,] B ) -cn-> ( RR  \  { 0 } ) )  ->  F : ( A [,] B ) --> ( RR 
\  { 0 } ) )
3 ffun 6048 . . . . . . . 8  |-  ( F : ( A [,] B ) --> ( RR 
\  { 0 } )  ->  Fun  F )
41, 2, 33syl 18 . . . . . . 7  |-  ( ph  ->  Fun  F )
54adantr 481 . . . . . 6  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  Fun  F )
6 simpr 477 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  c  e.  ( A [,] B ) )
71, 2syl 17 . . . . . . . . . 10  |-  ( ph  ->  F : ( A [,] B ) --> ( RR  \  { 0 } ) )
8 fdm 6051 . . . . . . . . . 10  |-  ( F : ( A [,] B ) --> ( RR 
\  { 0 } )  ->  dom  F  =  ( A [,] B
) )
97, 8syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  ( A [,] B ) )
109eqcomd 2628 . . . . . . . 8  |-  ( ph  ->  ( A [,] B
)  =  dom  F
)
1110adantr 481 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  ( A [,] B )  =  dom  F )
126, 11eleqtrd 2703 . . . . . 6  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  c  e.  dom  F )
13 fvco 6274 . . . . . 6  |-  ( ( Fun  F  /\  c  e.  dom  F )  -> 
( ( abs  o.  F ) `  c
)  =  ( abs `  ( F `  c
) ) )
145, 12, 13syl2anc 693 . . . . 5  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  ( ( abs  o.  F ) `  c )  =  ( abs `  ( F `
 c ) ) )
157ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  ( F `  c )  e.  ( RR  \  { 0 } ) )
1615eldifad 3586 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  ( F `  c )  e.  RR )
1716recnd 10068 . . . . . 6  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  ( F `  c )  e.  CC )
18 eldifsni 4320 . . . . . . 7  |-  ( ( F `  c )  e.  ( RR  \  { 0 } )  ->  ( F `  c )  =/=  0
)
1915, 18syl 17 . . . . . 6  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  ( F `  c )  =/=  0
)
2017, 19absrpcld 14187 . . . . 5  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  ( abs `  ( F `  c
) )  e.  RR+ )
2114, 20eqeltrd 2701 . . . 4  |-  ( (
ph  /\  c  e.  ( A [,] B ) )  ->  ( ( abs  o.  F ) `  c )  e.  RR+ )
2221adantr 481 . . 3  |-  ( ( ( ph  /\  c  e.  ( A [,] B
) )  /\  A. d  e.  ( A [,] B ) ( ( abs  o.  F ) `
 c )  <_ 
( ( abs  o.  F ) `  d
) )  ->  (
( abs  o.  F
) `  c )  e.  RR+ )
23 nfv 1843 . . . . 5  |-  F/ x
( ph  /\  c  e.  ( A [,] B
) )
24 nfcv 2764 . . . . . 6  |-  F/_ x
( A [,] B
)
25 nfcv 2764 . . . . . . . . 9  |-  F/_ x abs
26 cncficcgt0.f . . . . . . . . . 10  |-  F  =  ( x  e.  ( A [,] B ) 
|->  C )
27 nfmpt1 4747 . . . . . . . . . 10  |-  F/_ x
( x  e.  ( A [,] B ) 
|->  C )
2826, 27nfcxfr 2762 . . . . . . . . 9  |-  F/_ x F
2925, 28nfco 5287 . . . . . . . 8  |-  F/_ x
( abs  o.  F
)
30 nfcv 2764 . . . . . . . 8  |-  F/_ x
c
3129, 30nffv 6198 . . . . . . 7  |-  F/_ x
( ( abs  o.  F ) `  c
)
32 nfcv 2764 . . . . . . 7  |-  F/_ x  <_
33 nfcv 2764 . . . . . . . 8  |-  F/_ x
d
3429, 33nffv 6198 . . . . . . 7  |-  F/_ x
( ( abs  o.  F ) `  d
)
3531, 32, 34nfbr 4699 . . . . . 6  |-  F/ x
( ( abs  o.  F ) `  c
)  <_  ( ( abs  o.  F ) `  d )
3624, 35nfral 2945 . . . . 5  |-  F/ x A. d  e.  ( A [,] B ) ( ( abs  o.  F
) `  c )  <_  ( ( abs  o.  F ) `  d
)
3723, 36nfan 1828 . . . 4  |-  F/ x
( ( ph  /\  c  e.  ( A [,] B ) )  /\  A. d  e.  ( A [,] B ) ( ( abs  o.  F
) `  c )  <_  ( ( abs  o.  F ) `  d
) )
38 fveq2 6191 . . . . . . . . 9  |-  ( d  =  x  ->  (
( abs  o.  F
) `  d )  =  ( ( abs 
o.  F ) `  x ) )
3938breq2d 4665 . . . . . . . 8  |-  ( d  =  x  ->  (
( ( abs  o.  F ) `  c
)  <_  ( ( abs  o.  F ) `  d )  <->  ( ( abs  o.  F ) `  c )  <_  (
( abs  o.  F
) `  x )
) )
4039rspccva 3308 . . . . . . 7  |-  ( ( A. d  e.  ( A [,] B ) ( ( abs  o.  F ) `  c
)  <_  ( ( abs  o.  F ) `  d )  /\  x  e.  ( A [,] B
) )  ->  (
( abs  o.  F
) `  c )  <_  ( ( abs  o.  F ) `  x
) )
4140adantll 750 . . . . . 6  |-  ( ( ( ( ph  /\  c  e.  ( A [,] B ) )  /\  A. d  e.  ( A [,] B ) ( ( abs  o.  F
) `  c )  <_  ( ( abs  o.  F ) `  d
) )  /\  x  e.  ( A [,] B
) )  ->  (
( abs  o.  F
) `  c )  <_  ( ( abs  o.  F ) `  x
) )
42 absf 14077 . . . . . . . . . . 11  |-  abs : CC
--> RR
4342a1i 11 . . . . . . . . . 10  |-  ( ph  ->  abs : CC --> RR )
44 difss 3737 . . . . . . . . . . . . 13  |-  ( RR 
\  { 0 } )  C_  RR
45 ax-resscn 9993 . . . . . . . . . . . . 13  |-  RR  C_  CC
4644, 45sstri 3612 . . . . . . . . . . . 12  |-  ( RR 
\  { 0 } )  C_  CC
4746a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  \  {
0 } )  C_  CC )
487, 47fssd 6057 . . . . . . . . . 10  |-  ( ph  ->  F : ( A [,] B ) --> CC )
49 fcompt 6400 . . . . . . . . . 10  |-  ( ( abs : CC --> RR  /\  F : ( A [,] B ) --> CC )  ->  ( abs  o.  F )  =  ( z  e.  ( A [,] B )  |->  ( abs `  ( F `
 z ) ) ) )
5043, 48, 49syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( abs  o.  F
)  =  ( z  e.  ( A [,] B )  |->  ( abs `  ( F `  z
) ) ) )
51 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ x
z
5228, 51nffv 6198 . . . . . . . . . . . 12  |-  F/_ x
( F `  z
)
5325, 52nffv 6198 . . . . . . . . . . 11  |-  F/_ x
( abs `  ( F `  z )
)
54 nfcv 2764 . . . . . . . . . . 11  |-  F/_ z
( abs `  ( F `  x )
)
55 fveq2 6191 . . . . . . . . . . . 12  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
5655fveq2d 6195 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( abs `  ( F `  z ) )  =  ( abs `  ( F `  x )
) )
5753, 54, 56cbvmpt 4749 . . . . . . . . . 10  |-  ( z  e.  ( A [,] B )  |->  ( abs `  ( F `  z
) ) )  =  ( x  e.  ( A [,] B ) 
|->  ( abs `  ( F `  x )
) )
5857a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( abs `  ( F `  z )
) )  =  ( x  e.  ( A [,] B )  |->  ( abs `  ( F `
 x ) ) ) )
5926a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  F  =  ( x  e.  ( A [,] B )  |->  C ) )
6059, 7feq1dd 39347 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  C ) : ( A [,] B ) --> ( RR  \  {
0 } ) )
6160mptex2 6384 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  C  e.  ( RR  \  { 0 } ) )
6259, 61fvmpt2d 6293 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  =  C )
6362fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( abs `  ( F `  x
) )  =  ( abs `  C ) )
6463mpteq2dva 4744 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( abs `  ( F `  x )
) )  =  ( x  e.  ( A [,] B )  |->  ( abs `  C ) ) )
6550, 58, 643eqtrd 2660 . . . . . . . 8  |-  ( ph  ->  ( abs  o.  F
)  =  ( x  e.  ( A [,] B )  |->  ( abs `  C ) ) )
6646, 61sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  C  e.  CC )
6766abscld 14175 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( abs `  C )  e.  RR )
6865, 67fvmpt2d 6293 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( ( abs  o.  F ) `  x )  =  ( abs `  C ) )
6968ad4ant14 1293 . . . . . 6  |-  ( ( ( ( ph  /\  c  e.  ( A [,] B ) )  /\  A. d  e.  ( A [,] B ) ( ( abs  o.  F
) `  c )  <_  ( ( abs  o.  F ) `  d
) )  /\  x  e.  ( A [,] B
) )  ->  (
( abs  o.  F
) `  x )  =  ( abs `  C
) )
7041, 69breqtrd 4679 . . . . 5  |-  ( ( ( ( ph  /\  c  e.  ( A [,] B ) )  /\  A. d  e.  ( A [,] B ) ( ( abs  o.  F
) `  c )  <_  ( ( abs  o.  F ) `  d
) )  /\  x  e.  ( A [,] B
) )  ->  (
( abs  o.  F
) `  c )  <_  ( abs `  C
) )
7170ex 450 . . . 4  |-  ( ( ( ph  /\  c  e.  ( A [,] B
) )  /\  A. d  e.  ( A [,] B ) ( ( abs  o.  F ) `
 c )  <_ 
( ( abs  o.  F ) `  d
) )  ->  (
x  e.  ( A [,] B )  -> 
( ( abs  o.  F ) `  c
)  <_  ( abs `  C ) ) )
7237, 71ralrimi 2957 . . 3  |-  ( ( ( ph  /\  c  e.  ( A [,] B
) )  /\  A. d  e.  ( A [,] B ) ( ( abs  o.  F ) `
 c )  <_ 
( ( abs  o.  F ) `  d
) )  ->  A. x  e.  ( A [,] B
) ( ( abs 
o.  F ) `  c )  <_  ( abs `  C ) )
7331nfeq2 2780 . . . . 5  |-  F/ x  y  =  ( ( abs  o.  F ) `  c )
74 breq1 4656 . . . . 5  |-  ( y  =  ( ( abs 
o.  F ) `  c )  ->  (
y  <_  ( abs `  C )  <->  ( ( abs  o.  F ) `  c )  <_  ( abs `  C ) ) )
7573, 74ralbid 2983 . . . 4  |-  ( y  =  ( ( abs 
o.  F ) `  c )  ->  ( A. x  e.  ( A [,] B ) y  <_  ( abs `  C
)  <->  A. x  e.  ( A [,] B ) ( ( abs  o.  F ) `  c
)  <_  ( abs `  C ) ) )
7675rspcev 3309 . . 3  |-  ( ( ( ( abs  o.  F ) `  c
)  e.  RR+  /\  A. x  e.  ( A [,] B ) ( ( abs  o.  F ) `
 c )  <_ 
( abs `  C
) )  ->  E. y  e.  RR+  A. x  e.  ( A [,] B
) y  <_  ( abs `  C ) )
7722, 72, 76syl2anc 693 . 2  |-  ( ( ( ph  /\  c  e.  ( A [,] B
) )  /\  A. d  e.  ( A [,] B ) ( ( abs  o.  F ) `
 c )  <_ 
( ( abs  o.  F ) `  d
) )  ->  E. y  e.  RR+  A. x  e.  ( A [,] B
) y  <_  ( abs `  C ) )
78 cncficcgt0.a . . . 4  |-  ( ph  ->  A  e.  RR )
79 cncficcgt0.b . . . 4  |-  ( ph  ->  B  e.  RR )
80 cncficcgt0.aleb . . . 4  |-  ( ph  ->  A  <_  B )
81 ssid 3624 . . . . . . . 8  |-  CC  C_  CC
8281a1i 11 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
83 cncfss 22702 . . . . . . 7  |-  ( ( ( RR  \  {
0 } )  C_  CC  /\  CC  C_  CC )  ->  ( ( A [,] B ) -cn-> ( RR  \  { 0 } ) )  C_  ( ( A [,] B ) -cn-> CC ) )
8447, 82, 83syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( A [,] B ) -cn-> ( RR 
\  { 0 } ) )  C_  (
( A [,] B
) -cn-> CC ) )
8584, 1sseldd 3604 . . . . 5  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
86 abscncf 22704 . . . . . 6  |-  abs  e.  ( CC -cn-> RR )
8786a1i 11 . . . . 5  |-  ( ph  ->  abs  e.  ( CC
-cn-> RR ) )
8885, 87cncfco 22710 . . . 4  |-  ( ph  ->  ( abs  o.  F
)  e.  ( ( A [,] B )
-cn-> RR ) )
8978, 79, 80, 88evthicc 23228 . . 3  |-  ( ph  ->  ( E. a  e.  ( A [,] B
) A. b  e.  ( A [,] B
) ( ( abs 
o.  F ) `  b )  <_  (
( abs  o.  F
) `  a )  /\  E. c  e.  ( A [,] B ) A. d  e.  ( A [,] B ) ( ( abs  o.  F ) `  c
)  <_  ( ( abs  o.  F ) `  d ) ) )
9089simprd 479 . 2  |-  ( ph  ->  E. c  e.  ( A [,] B ) A. d  e.  ( A [,] B ) ( ( abs  o.  F ) `  c
)  <_  ( ( abs  o.  F ) `  d ) )
9177, 90r19.29a 3078 1  |-  ( ph  ->  E. y  e.  RR+  A. x  e.  ( A [,] B ) y  <_  ( abs `  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    <_ cle 10075   RR+crp 11832   [,]cicc 12178   abscabs 13974   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681
This theorem is referenced by:  fourierdlem68  40391
  Copyright terms: Public domain W3C validator