MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubr Structured version   Visualization version   Unicode version

Theorem 1cubr 24569
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
1cubr.r  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
Assertion
Ref Expression
1cubr  |-  ( A  e.  R  <->  ( A  e.  CC  /\  ( A ^ 3 )  =  1 ) )

Proof of Theorem 1cubr
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 1cubr.r . . . . 5  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
2 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
3 neg1cn 11124 . . . . . . . . 9  |-  -u 1  e.  CC
4 ax-icn 9995 . . . . . . . . . 10  |-  _i  e.  CC
5 3cn 11095 . . . . . . . . . . 11  |-  3  e.  CC
6 sqrtcl 14101 . . . . . . . . . . 11  |-  ( 3  e.  CC  ->  ( sqr `  3 )  e.  CC )
75, 6ax-mp 5 . . . . . . . . . 10  |-  ( sqr `  3 )  e.  CC
84, 7mulcli 10045 . . . . . . . . 9  |-  ( _i  x.  ( sqr `  3
) )  e.  CC
93, 8addcli 10044 . . . . . . . 8  |-  ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  e.  CC
10 halfcl 11257 . . . . . . . 8  |-  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  e.  CC  ->  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC )
119, 10ax-mp 5 . . . . . . 7  |-  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC
123, 8subcli 10357 . . . . . . . 8  |-  ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  e.  CC
13 halfcl 11257 . . . . . . . 8  |-  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  e.  CC  ->  (
( -u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC )
1412, 13ax-mp 5 . . . . . . 7  |-  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC
152, 11, 143pm3.2i 1239 . . . . . 6  |-  ( 1  e.  CC  /\  (
( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC  /\  (
( -u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC )
162elexi 3213 . . . . . . 7  |-  1  e.  _V
17 ovex 6678 . . . . . . 7  |-  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  e.  _V
18 ovex 6678 . . . . . . 7  |-  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )  e. 
_V
1916, 17, 18tpss 4368 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2
)  e.  CC  /\  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2
)  e.  CC )  <->  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }  C_  CC )
2015, 19mpbi 220 . . . . 5  |-  { 1 ,  ( ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) ,  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) }  C_  CC
211, 20eqsstri 3635 . . . 4  |-  R  C_  CC
2221sseli 3599 . . 3  |-  ( A  e.  R  ->  A  e.  CC )
2322pm4.71ri 665 . 2  |-  ( A  e.  R  <->  ( A  e.  CC  /\  A  e.  R ) )
24 3nn 11186 . . . . 5  |-  3  e.  NN
25 cxpeq 24498 . . . . 5  |-  ( ( A  e.  CC  /\  3  e.  NN  /\  1  e.  CC )  ->  (
( A ^ 3 )  =  1  <->  E. n  e.  ( 0 ... ( 3  -  1 ) ) A  =  ( ( 1  ^c  ( 1  /  3 ) )  x.  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ n ) ) ) )
2624, 2, 25mp3an23 1416 . . . 4  |-  ( A  e.  CC  ->  (
( A ^ 3 )  =  1  <->  E. n  e.  ( 0 ... ( 3  -  1 ) ) A  =  ( ( 1  ^c  ( 1  /  3 ) )  x.  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ n ) ) ) )
27 eltpg 4227 . . . . 5  |-  ( A  e.  CC  ->  ( A  e.  { 1 ,  ( ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) ,  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) }  <->  ( A  =  1  \/  A  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2
)  \/  A  =  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2
) ) ) )
281eleq2i 2693 . . . . 5  |-  ( A  e.  R  <->  A  e.  { 1 ,  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) } )
29 3m1e2 11137 . . . . . . . . . 10  |-  ( 3  -  1 )  =  2
30 2cn 11091 . . . . . . . . . . 11  |-  2  e.  CC
3130addid2i 10224 . . . . . . . . . 10  |-  ( 0  +  2 )  =  2
3229, 31eqtr4i 2647 . . . . . . . . 9  |-  ( 3  -  1 )  =  ( 0  +  2 )
3332oveq2i 6661 . . . . . . . 8  |-  ( 0 ... ( 3  -  1 ) )  =  ( 0 ... (
0  +  2 ) )
34 0z 11388 . . . . . . . . 9  |-  0  e.  ZZ
35 fztp 12397 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } )
3634, 35ax-mp 5 . . . . . . . 8  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }
3733, 36eqtri 2644 . . . . . . 7  |-  ( 0 ... ( 3  -  1 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }
3837rexeqi 3143 . . . . . 6  |-  ( E. n  e.  ( 0 ... ( 3  -  1 ) ) A  =  ( ( 1  ^c  ( 1  /  3 ) )  x.  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ n ) )  <->  E. n  e.  {
0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } A  =  ( ( 1  ^c  ( 1  / 
3 ) )  x.  ( ( -u 1  ^c  ( 2  /  3 ) ) ^ n ) ) )
39 3ne0 11115 . . . . . . . . . . 11  |-  3  =/=  0
405, 39reccli 10755 . . . . . . . . . 10  |-  ( 1  /  3 )  e.  CC
41 1cxp 24418 . . . . . . . . . 10  |-  ( ( 1  /  3 )  e.  CC  ->  (
1  ^c  ( 1  /  3 ) )  =  1 )
4240, 41ax-mp 5 . . . . . . . . 9  |-  ( 1  ^c  ( 1  /  3 ) )  =  1
4342oveq1i 6660 . . . . . . . 8  |-  ( ( 1  ^c  ( 1  /  3 ) )  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ n
) )  =  ( 1  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ n
) )
4443eqeq2i 2634 . . . . . . 7  |-  ( A  =  ( ( 1  ^c  ( 1  /  3 ) )  x.  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ n ) )  <->  A  =  (
1  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ n
) ) )
4544rexbii 3041 . . . . . 6  |-  ( E. n  e.  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } A  =  ( ( 1  ^c 
( 1  /  3
) )  x.  (
( -u 1  ^c 
( 2  /  3
) ) ^ n
) )  <->  E. n  e.  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } A  =  ( 1  x.  ( ( -u 1  ^c  ( 2  /  3 ) ) ^ n ) ) )
4634elexi 3213 . . . . . . 7  |-  0  e.  _V
47 ovex 6678 . . . . . . 7  |-  ( 0  +  1 )  e. 
_V
48 ovex 6678 . . . . . . 7  |-  ( 0  +  2 )  e. 
_V
49 oveq2 6658 . . . . . . . . . . 11  |-  ( n  =  0  ->  (
( -u 1  ^c 
( 2  /  3
) ) ^ n
)  =  ( (
-u 1  ^c 
( 2  /  3
) ) ^ 0 ) )
5030, 5, 39divcli 10767 . . . . . . . . . . . . 13  |-  ( 2  /  3 )  e.  CC
51 cxpcl 24420 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  CC  /\  ( 2  /  3
)  e.  CC )  ->  ( -u 1  ^c  ( 2  /  3 ) )  e.  CC )
523, 50, 51mp2an 708 . . . . . . . . . . . 12  |-  ( -u
1  ^c  ( 2  /  3 ) )  e.  CC
53 exp0 12864 . . . . . . . . . . . 12  |-  ( (
-u 1  ^c 
( 2  /  3
) )  e.  CC  ->  ( ( -u 1  ^c  ( 2  /  3 ) ) ^ 0 )  =  1 )
5452, 53ax-mp 5 . . . . . . . . . . 11  |-  ( (
-u 1  ^c 
( 2  /  3
) ) ^ 0 )  =  1
5549, 54syl6eq 2672 . . . . . . . . . 10  |-  ( n  =  0  ->  (
( -u 1  ^c 
( 2  /  3
) ) ^ n
)  =  1 )
5655oveq2d 6666 . . . . . . . . 9  |-  ( n  =  0  ->  (
1  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ n
) )  =  ( 1  x.  1 ) )
57 1t1e1 11175 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
5856, 57syl6eq 2672 . . . . . . . 8  |-  ( n  =  0  ->  (
1  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ n
) )  =  1 )
5958eqeq2d 2632 . . . . . . 7  |-  ( n  =  0  ->  ( A  =  ( 1  x.  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ n ) )  <->  A  =  1
) )
60 id 22 . . . . . . . . . . . . 13  |-  ( n  =  ( 0  +  1 )  ->  n  =  ( 0  +  1 ) )
612addid2i 10224 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
6260, 61syl6eq 2672 . . . . . . . . . . . 12  |-  ( n  =  ( 0  +  1 )  ->  n  =  1 )
6362oveq2d 6666 . . . . . . . . . . 11  |-  ( n  =  ( 0  +  1 )  ->  (
( -u 1  ^c 
( 2  /  3
) ) ^ n
)  =  ( (
-u 1  ^c 
( 2  /  3
) ) ^ 1 ) )
64 exp1 12866 . . . . . . . . . . . 12  |-  ( (
-u 1  ^c 
( 2  /  3
) )  e.  CC  ->  ( ( -u 1  ^c  ( 2  /  3 ) ) ^ 1 )  =  ( -u 1  ^c  ( 2  / 
3 ) ) )
6552, 64ax-mp 5 . . . . . . . . . . 11  |-  ( (
-u 1  ^c 
( 2  /  3
) ) ^ 1 )  =  ( -u
1  ^c  ( 2  /  3 ) )
6663, 65syl6eq 2672 . . . . . . . . . 10  |-  ( n  =  ( 0  +  1 )  ->  (
( -u 1  ^c 
( 2  /  3
) ) ^ n
)  =  ( -u
1  ^c  ( 2  /  3 ) ) )
6766oveq2d 6666 . . . . . . . . 9  |-  ( n  =  ( 0  +  1 )  ->  (
1  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ n
) )  =  ( 1  x.  ( -u
1  ^c  ( 2  /  3 ) ) ) )
6852mulid2i 10043 . . . . . . . . . 10  |-  ( 1  x.  ( -u 1  ^c  ( 2  /  3 ) ) )  =  ( -u
1  ^c  ( 2  /  3 ) )
69 1cubrlem 24568 . . . . . . . . . . 11  |-  ( (
-u 1  ^c 
( 2  /  3
) )  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  /\  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ 2 )  =  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )
7069simpli 474 . . . . . . . . . 10  |-  ( -u
1  ^c  ( 2  /  3 ) )  =  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )
7168, 70eqtri 2644 . . . . . . . . 9  |-  ( 1  x.  ( -u 1  ^c  ( 2  /  3 ) ) )  =  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )
7267, 71syl6eq 2672 . . . . . . . 8  |-  ( n  =  ( 0  +  1 )  ->  (
1  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ n
) )  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) )
7372eqeq2d 2632 . . . . . . 7  |-  ( n  =  ( 0  +  1 )  ->  ( A  =  ( 1  x.  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ n ) )  <->  A  =  (
( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ) )
74 id 22 . . . . . . . . . . . 12  |-  ( n  =  ( 0  +  2 )  ->  n  =  ( 0  +  2 ) )
7574, 31syl6eq 2672 . . . . . . . . . . 11  |-  ( n  =  ( 0  +  2 )  ->  n  =  2 )
7675oveq2d 6666 . . . . . . . . . 10  |-  ( n  =  ( 0  +  2 )  ->  (
( -u 1  ^c 
( 2  /  3
) ) ^ n
)  =  ( (
-u 1  ^c 
( 2  /  3
) ) ^ 2 ) )
7776oveq2d 6666 . . . . . . . . 9  |-  ( n  =  ( 0  +  2 )  ->  (
1  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ n
) )  =  ( 1  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ 2 ) ) )
7852sqcli 12944 . . . . . . . . . . 11  |-  ( (
-u 1  ^c 
( 2  /  3
) ) ^ 2 )  e.  CC
7978mulid2i 10043 . . . . . . . . . 10  |-  ( 1  x.  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ 2 ) )  =  ( (
-u 1  ^c 
( 2  /  3
) ) ^ 2 )
8069simpri 478 . . . . . . . . . 10  |-  ( (
-u 1  ^c 
( 2  /  3
) ) ^ 2 )  =  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )
8179, 80eqtri 2644 . . . . . . . . 9  |-  ( 1  x.  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ 2 ) )  =  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )
8277, 81syl6eq 2672 . . . . . . . 8  |-  ( n  =  ( 0  +  2 )  ->  (
1  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ n
) )  =  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) )
8382eqeq2d 2632 . . . . . . 7  |-  ( n  =  ( 0  +  2 )  ->  ( A  =  ( 1  x.  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ n ) )  <->  A  =  (
( -u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 ) ) )
8446, 47, 48, 59, 73, 83rextp 4241 . . . . . 6  |-  ( E. n  e.  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } A  =  ( 1  x.  ( (
-u 1  ^c 
( 2  /  3
) ) ^ n
) )  <->  ( A  =  1  \/  A  =  ( ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 )  \/  A  =  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) ) )
8538, 45, 843bitri 286 . . . . 5  |-  ( E. n  e.  ( 0 ... ( 3  -  1 ) ) A  =  ( ( 1  ^c  ( 1  /  3 ) )  x.  ( ( -u
1  ^c  ( 2  /  3 ) ) ^ n ) )  <->  ( A  =  1  \/  A  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2
)  \/  A  =  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2
) ) )
8627, 28, 853bitr4g 303 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  R  <->  E. n  e.  ( 0 ... (
3  -  1 ) ) A  =  ( ( 1  ^c 
( 1  /  3
) )  x.  (
( -u 1  ^c 
( 2  /  3
) ) ^ n
) ) ) )
8726, 86bitr4d 271 . . 3  |-  ( A  e.  CC  ->  (
( A ^ 3 )  =  1  <->  A  e.  R ) )
8887pm5.32i 669 . 2  |-  ( ( A  e.  CC  /\  ( A ^ 3 )  =  1 )  <->  ( A  e.  CC  /\  A  e.  R ) )
8923, 88bitr4i 267 1  |-  ( A  e.  R  <->  ( A  e.  CC  /\  ( A ^ 3 )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   {ctp 4181   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   ZZcz 11377   ...cfz 12326   ^cexp 12860   sqrcsqrt 13973    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  cubic  24576
  Copyright terms: Public domain W3C validator