MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnadd Structured version   Visualization version   Unicode version

Theorem dvnadd 23692
Description: The  N-th derivative of the  M-th derivative of  F is the same as the  M  +  N-th derivative of  F. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnadd  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  ( ( S  Dn ( ( S  Dn F ) `  M ) ) `  N )  =  ( ( S  Dn F ) `
 ( M  +  N ) ) )

Proof of Theorem dvnadd
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( n  =  0  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  n )  =  ( ( S  Dn
( ( S  Dn F ) `  M ) ) ` 
0 ) )
2 oveq2 6658 . . . . . . 7  |-  ( n  =  0  ->  ( M  +  n )  =  ( M  + 
0 ) )
32fveq2d 6195 . . . . . 6  |-  ( n  =  0  ->  (
( S  Dn
F ) `  ( M  +  n )
)  =  ( ( S  Dn F ) `  ( M  +  0 ) ) )
41, 3eqeq12d 2637 . . . . 5  |-  ( n  =  0  ->  (
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 n )  =  ( ( S  Dn F ) `  ( M  +  n
) )  <->  ( ( S  Dn ( ( S  Dn F ) `  M ) ) `  0 )  =  ( ( S  Dn F ) `
 ( M  + 
0 ) ) ) )
54imbi2d 330 . . . 4  |-  ( n  =  0  ->  (
( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  /\  M  e.  NN0 )  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  n )  =  ( ( S  Dn
F ) `  ( M  +  n )
) )  <->  ( (
( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 0 )  =  ( ( S  Dn F ) `  ( M  +  0
) ) ) ) )
6 fveq2 6191 . . . . . 6  |-  ( n  =  k  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  n )  =  ( ( S  Dn
( ( S  Dn F ) `  M ) ) `  k ) )
7 oveq2 6658 . . . . . . 7  |-  ( n  =  k  ->  ( M  +  n )  =  ( M  +  k ) )
87fveq2d 6195 . . . . . 6  |-  ( n  =  k  ->  (
( S  Dn
F ) `  ( M  +  n )
)  =  ( ( S  Dn F ) `  ( M  +  k ) ) )
96, 8eqeq12d 2637 . . . . 5  |-  ( n  =  k  ->  (
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 n )  =  ( ( S  Dn F ) `  ( M  +  n
) )  <->  ( ( S  Dn ( ( S  Dn F ) `  M ) ) `  k )  =  ( ( S  Dn F ) `
 ( M  +  k ) ) ) )
109imbi2d 330 . . . 4  |-  ( n  =  k  ->  (
( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  /\  M  e.  NN0 )  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  n )  =  ( ( S  Dn
F ) `  ( M  +  n )
) )  <->  ( (
( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 k )  =  ( ( S  Dn F ) `  ( M  +  k
) ) ) ) )
11 fveq2 6191 . . . . . 6  |-  ( n  =  ( k  +  1 )  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  n )  =  ( ( S  Dn
( ( S  Dn F ) `  M ) ) `  ( k  +  1 ) ) )
12 oveq2 6658 . . . . . . 7  |-  ( n  =  ( k  +  1 )  ->  ( M  +  n )  =  ( M  +  ( k  +  1 ) ) )
1312fveq2d 6195 . . . . . 6  |-  ( n  =  ( k  +  1 )  ->  (
( S  Dn
F ) `  ( M  +  n )
)  =  ( ( S  Dn F ) `  ( M  +  ( k  +  1 ) ) ) )
1411, 13eqeq12d 2637 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  (
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 n )  =  ( ( S  Dn F ) `  ( M  +  n
) )  <->  ( ( S  Dn ( ( S  Dn F ) `  M ) ) `  ( k  +  1 ) )  =  ( ( S  Dn F ) `
 ( M  +  ( k  +  1 ) ) ) ) )
1514imbi2d 330 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  /\  M  e.  NN0 )  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  n )  =  ( ( S  Dn
F ) `  ( M  +  n )
) )  <->  ( (
( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 ( k  +  1 ) )  =  ( ( S  Dn F ) `  ( M  +  (
k  +  1 ) ) ) ) ) )
16 fveq2 6191 . . . . . 6  |-  ( n  =  N  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  n )  =  ( ( S  Dn
( ( S  Dn F ) `  M ) ) `  N ) )
17 oveq2 6658 . . . . . . 7  |-  ( n  =  N  ->  ( M  +  n )  =  ( M  +  N ) )
1817fveq2d 6195 . . . . . 6  |-  ( n  =  N  ->  (
( S  Dn
F ) `  ( M  +  n )
)  =  ( ( S  Dn F ) `  ( M  +  N ) ) )
1916, 18eqeq12d 2637 . . . . 5  |-  ( n  =  N  ->  (
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 n )  =  ( ( S  Dn F ) `  ( M  +  n
) )  <->  ( ( S  Dn ( ( S  Dn F ) `  M ) ) `  N )  =  ( ( S  Dn F ) `
 ( M  +  N ) ) ) )
2019imbi2d 330 . . . 4  |-  ( n  =  N  ->  (
( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  /\  M  e.  NN0 )  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  n )  =  ( ( S  Dn
F ) `  ( M  +  n )
) )  <->  ( (
( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 N )  =  ( ( S  Dn F ) `  ( M  +  N
) ) ) ) )
21 recnprss 23668 . . . . . . 7  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
2221ad2antrr 762 . . . . . 6  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  ->  S  C_  CC )
23 ssid 3624 . . . . . . . . . 10  |-  CC  C_  CC
2423a1i 11 . . . . . . . . 9  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  CC  C_  CC )
25 cnex 10017 . . . . . . . . . . 11  |-  CC  e.  _V
26 elpm2g 7874 . . . . . . . . . . 11  |-  ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  -> 
( F  e.  ( CC  ^pm  S )  <->  ( F : dom  F --> CC  /\  dom  F  C_  S ) ) )
2725, 26mpan 706 . . . . . . . . . 10  |-  ( S  e.  { RR ,  CC }  ->  ( F  e.  ( CC  ^pm  S
)  <->  ( F : dom  F --> CC  /\  dom  F 
C_  S ) ) )
2827simplbda 654 . . . . . . . . 9  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  S )
2925a1i 11 . . . . . . . . 9  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  CC  e.  _V )
30 simpl 473 . . . . . . . . 9  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  S  e.  { RR ,  CC } )
31 pmss12g 7884 . . . . . . . . 9  |-  ( ( ( CC  C_  CC  /\ 
dom  F  C_  S )  /\  ( CC  e.  _V  /\  S  e.  { RR ,  CC } ) )  ->  ( CC  ^pm 
dom  F )  C_  ( CC  ^pm  S ) )
3224, 28, 29, 30, 31syl22anc 1327 . . . . . . . 8  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( CC  ^pm  dom  F )  C_  ( CC  ^pm  S
) )
3332adantr 481 . . . . . . 7  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( CC  ^pm  dom  F )  C_  ( CC  ^pm 
S ) )
34 dvnff 23686 . . . . . . . 8  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  Dn F ) : NN0 --> ( CC 
^pm  dom  F ) )
3534ffvelrnda 6359 . . . . . . 7  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( S  Dn F ) `  M )  e.  ( CC  ^pm  dom  F ) )
3633, 35sseldd 3604 . . . . . 6  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( S  Dn F ) `  M )  e.  ( CC  ^pm  S )
)
37 dvn0 23687 . . . . . 6  |-  ( ( S  C_  CC  /\  (
( S  Dn
F ) `  M
)  e.  ( CC 
^pm  S ) )  ->  ( ( S  Dn ( ( S  Dn F ) `  M ) ) `  0 )  =  ( ( S  Dn F ) `
 M ) )
3822, 36, 37syl2anc 693 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 0 )  =  ( ( S  Dn F ) `  M ) )
39 nn0cn 11302 . . . . . . . 8  |-  ( M  e.  NN0  ->  M  e.  CC )
4039adantl 482 . . . . . . 7  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  ->  M  e.  CC )
4140addid1d 10236 . . . . . 6  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( M  +  0 )  =  M )
4241fveq2d 6195 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( S  Dn F ) `  ( M  +  0
) )  =  ( ( S  Dn
F ) `  M
) )
4338, 42eqtr4d 2659 . . . 4  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 0 )  =  ( ( S  Dn F ) `  ( M  +  0
) ) )
44 oveq2 6658 . . . . . . 7  |-  ( ( ( S  Dn
( ( S  Dn F ) `  M ) ) `  k )  =  ( ( S  Dn
F ) `  ( M  +  k )
)  ->  ( S  _D  ( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 k ) )  =  ( S  _D  ( ( S  Dn F ) `  ( M  +  k
) ) ) )
4522adantr 481 . . . . . . . . 9  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  S  C_  CC )
4636adantr 481 . . . . . . . . 9  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  (
( S  Dn
F ) `  M
)  e.  ( CC 
^pm  S ) )
47 simpr 477 . . . . . . . . 9  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  k  e.  NN0 )
48 dvnp1 23688 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  (
( S  Dn
F ) `  M
)  e.  ( CC 
^pm  S )  /\  k  e.  NN0 )  -> 
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 ( k  +  1 ) )  =  ( S  _D  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  k ) ) )
4945, 46, 47, 48syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  ( k  +  1 ) )  =  ( S  _D  ( ( S  Dn ( ( S  Dn
F ) `  M
) ) `  k
) ) )
5040adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  M  e.  CC )
51 nn0cn 11302 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
5251adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  k  e.  CC )
53 1cnd 10056 . . . . . . . . . . 11  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  1  e.  CC )
5450, 52, 53addassd 10062 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  (
( M  +  k )  +  1 )  =  ( M  +  ( k  +  1 ) ) )
5554fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  (
( S  Dn
F ) `  (
( M  +  k )  +  1 ) )  =  ( ( S  Dn F ) `  ( M  +  ( k  +  1 ) ) ) )
56 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  F  e.  ( CC  ^pm  S
) )
57 nn0addcl 11328 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  +  k )  e.  NN0 )
5857adantll 750 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  ( M  +  k )  e.  NN0 )
59 dvnp1 23688 . . . . . . . . . 10  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
)  /\  ( M  +  k )  e. 
NN0 )  ->  (
( S  Dn
F ) `  (
( M  +  k )  +  1 ) )  =  ( S  _D  ( ( S  Dn F ) `
 ( M  +  k ) ) ) )
6045, 56, 58, 59syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  (
( S  Dn
F ) `  (
( M  +  k )  +  1 ) )  =  ( S  _D  ( ( S  Dn F ) `
 ( M  +  k ) ) ) )
6155, 60eqtr3d 2658 . . . . . . . 8  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  (
( S  Dn
F ) `  ( M  +  ( k  +  1 ) ) )  =  ( S  _D  ( ( S  Dn F ) `
 ( M  +  k ) ) ) )
6249, 61eqeq12d 2637 . . . . . . 7  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  (
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 ( k  +  1 ) )  =  ( ( S  Dn F ) `  ( M  +  (
k  +  1 ) ) )  <->  ( S  _D  ( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 k ) )  =  ( S  _D  ( ( S  Dn F ) `  ( M  +  k
) ) ) ) )
6344, 62syl5ibr 236 . . . . . 6  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  /\  k  e. 
NN0 )  ->  (
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 k )  =  ( ( S  Dn F ) `  ( M  +  k
) )  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  ( k  +  1 ) )  =  ( ( S  Dn
F ) `  ( M  +  ( k  +  1 ) ) ) ) )
6463expcom 451 . . . . 5  |-  ( k  e.  NN0  ->  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( ( S  Dn ( ( S  Dn F ) `  M ) ) `  k )  =  ( ( S  Dn F ) `
 ( M  +  k ) )  -> 
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 ( k  +  1 ) )  =  ( ( S  Dn F ) `  ( M  +  (
k  +  1 ) ) ) ) ) )
6564a2d 29 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  M  e.  NN0 )  ->  ( ( S  Dn ( ( S  Dn F ) `  M ) ) `  k )  =  ( ( S  Dn F ) `
 ( M  +  k ) ) )  ->  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  /\  M  e.  NN0 )  ->  (
( S  Dn
( ( S  Dn F ) `  M ) ) `  ( k  +  1 ) )  =  ( ( S  Dn
F ) `  ( M  +  ( k  +  1 ) ) ) ) ) )
665, 10, 15, 20, 43, 65nn0ind 11472 . . 3  |-  ( N  e.  NN0  ->  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 N )  =  ( ( S  Dn F ) `  ( M  +  N
) ) ) )
6766com12 32 . 2  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( ( S  Dn ( ( S  Dn F ) `
 M ) ) `
 N )  =  ( ( S  Dn F ) `  ( M  +  N
) ) ) )
6867impr 649 1  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  ( ( S  Dn ( ( S  Dn F ) `  M ) ) `  N )  =  ( ( S  Dn F ) `
 ( M  +  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {cpr 4179   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292    _D cdv 23627    Dncdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  dvn2bss  23693  dvtaylp  24124  dvntaylp  24125  dvntaylp0  24126
  Copyright terms: Public domain W3C validator