MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmax Structured version   Visualization version   Unicode version

Theorem dyadmax 23366
Description: Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
Assertion
Ref Expression
dyadmax  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) )
Distinct variable groups:    x, y    z, w, x, y, A   
w, F, x, y, z

Proof of Theorem dyadmax
Dummy variables  c 
d  a  b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltweuz 12760 . . . . 5  |-  <  We  ( ZZ>= `  0 )
21a1i 11 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  <  We  ( ZZ>= `  0 )
)
3 nn0ex 11298 . . . . . 6  |-  NN0  e.  _V
43rabex 4813 . . . . 5  |-  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  e.  _V
54a1i 11 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  e.  _V )
6 ssrab2 3687 . . . . . 6  |-  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  C_  NN0
7 nn0uz 11722 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
86, 7sseqtri 3637 . . . . 5  |-  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  C_  ( ZZ>= ` 
0 )
98a1i 11 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  C_  ( ZZ>= ` 
0 ) )
10 id 22 . . . . . . 7  |-  ( A  =/=  (/)  ->  A  =/=  (/) )
11 dyadmbl.1 . . . . . . . . . . . 12  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
1211dyadf 23359 . . . . . . . . . . 11  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
13 ffn 6045 . . . . . . . . . . 11  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  ( ZZ  X.  NN0 ) )
14 ovelrn 6810 . . . . . . . . . . 11  |-  ( F  Fn  ( ZZ  X.  NN0 )  ->  ( z  e.  ran  F  <->  E. a  e.  ZZ  E. n  e. 
NN0  z  =  ( a F n ) ) )
1512, 13, 14mp2b 10 . . . . . . . . . 10  |-  ( z  e.  ran  F  <->  E. a  e.  ZZ  E. n  e. 
NN0  z  =  ( a F n ) )
16 rexcom 3099 . . . . . . . . . 10  |-  ( E. a  e.  ZZ  E. n  e.  NN0  z  =  ( a F n )  <->  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
1715, 16sylbb 209 . . . . . . . . 9  |-  ( z  e.  ran  F  ->  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
1817rgen 2922 . . . . . . . 8  |-  A. z  e.  ran  F E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n )
19 ssralv 3666 . . . . . . . 8  |-  ( A 
C_  ran  F  ->  ( A. z  e.  ran  F E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n )  ->  A. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) ) )
2018, 19mpi 20 . . . . . . 7  |-  ( A 
C_  ran  F  ->  A. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
21 r19.2z 4060 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )  ->  E. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
2210, 20, 21syl2anr 495 . . . . . 6  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
23 rexcom 3099 . . . . . 6  |-  ( E. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n )  <->  E. n  e.  NN0  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) )
2422, 23sylib 208 . . . . 5  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. n  e.  NN0  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) )
25 rabn0 3958 . . . . 5  |-  ( { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  =/=  (/)  <->  E. n  e.  NN0  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) )
2624, 25sylibr 224 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  =/=  (/) )
27 wereu 5110 . . . 4  |-  ( (  <  We  ( ZZ>= ` 
0 )  /\  ( { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  e.  _V  /\  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } 
C_  ( ZZ>= `  0
)  /\  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  =/=  (/) ) )  ->  E! c  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
282, 5, 9, 26, 27syl13anc 1328 . . 3  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E! c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
29 reurex 3160 . . 3  |-  ( E! c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. c  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
3028, 29syl 17 . 2  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
31 oveq2 6658 . . . . . . 7  |-  ( n  =  c  ->  (
a F n )  =  ( a F c ) )
3231eqeq2d 2632 . . . . . 6  |-  ( n  =  c  ->  (
z  =  ( a F n )  <->  z  =  ( a F c ) ) )
33322rexbidv 3057 . . . . 5  |-  ( n  =  c  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n )  <->  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c ) ) )
3433elrab 3363 . . . 4  |-  ( c  e.  { n  e. 
NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  <->  ( c  e. 
NN0  /\  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c ) ) )
35 eqeq1 2626 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  =  ( a F n )  <->  w  =  ( a F n ) ) )
36 oveq1 6657 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
a F n )  =  ( b F n ) )
3736eqeq2d 2632 . . . . . . . . . 10  |-  ( a  =  b  ->  (
w  =  ( a F n )  <->  w  =  ( b F n ) ) )
3835, 37cbvrex2v 3180 . . . . . . . . 9  |-  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n )  <->  E. w  e.  A  E. b  e.  ZZ  w  =  ( b F n ) )
39 oveq2 6658 . . . . . . . . . . 11  |-  ( n  =  d  ->  (
b F n )  =  ( b F d ) )
4039eqeq2d 2632 . . . . . . . . . 10  |-  ( n  =  d  ->  (
w  =  ( b F n )  <->  w  =  ( b F d ) ) )
41402rexbidv 3057 . . . . . . . . 9  |-  ( n  =  d  ->  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F n )  <->  E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d ) ) )
4238, 41syl5bb 272 . . . . . . . 8  |-  ( n  =  d  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n )  <->  E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d ) ) )
4342ralrab 3368 . . . . . . 7  |-  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  < 
c  <->  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
44 r19.23v 3023 . . . . . . . . . . . . . . . . 17  |-  ( A. w  e.  A  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <-> 
( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
4544ralbii 2980 . . . . . . . . . . . . . . . 16  |-  ( A. d  e.  NN0  A. w  e.  A  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <->  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
46 ralcom 3098 . . . . . . . . . . . . . . . 16  |-  ( A. d  e.  NN0  A. w  e.  A  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <->  A. w  e.  A  A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
4745, 46bitr3i 266 . . . . . . . . . . . . . . 15  |-  ( A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <->  A. w  e.  A  A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
48 simplll 798 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  ->  A  C_  ran  F )
4948sselda 3603 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  w  e.  ran  F )
50 ovelrn 6810 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  Fn  ( ZZ  X.  NN0 )  ->  ( w  e.  ran  F  <->  E. b  e.  ZZ  E. d  e. 
NN0  w  =  ( b F d ) ) )
5112, 13, 50mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ran  F  <->  E. b  e.  ZZ  E. d  e. 
NN0  w  =  ( b F d ) )
5249, 51sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  E. b  e.  ZZ  E. d  e. 
NN0  w  =  ( b F d ) )
53 rexcom 3099 . . . . . . . . . . . . . . . . . . 19  |-  ( E. b  e.  ZZ  E. d  e.  NN0  w  =  ( b F d )  <->  E. d  e.  NN0  E. b  e.  ZZ  w  =  ( b F d ) )
54 r19.29 3072 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. d  e. 
NN0  E. b  e.  ZZ  w  =  ( b F d ) )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) )
5554expcom 451 . . . . . . . . . . . . . . . . . . 19  |-  ( E. d  e.  NN0  E. b  e.  ZZ  w  =  ( b F d )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) ) )
5653, 55sylbi 207 . . . . . . . . . . . . . . . . . 18  |-  ( E. b  e.  ZZ  E. d  e.  NN0  w  =  ( b F d )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) ) )
5752, 56syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) ) )
58 simplrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  a  e.  ZZ )
5958ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  a  e.  ZZ )
60 simplrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  b  e.  ZZ )
61 simp-5r 809 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  c  e.  NN0 )
62 simplrl 800 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  d  e.  NN0 )
63 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  -.  d  <  c )
64 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) )
6511, 59, 60, 61, 62, 63, 64dyadmaxlem 23365 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  (
a  =  b  /\  c  =  d )
)
66 oveq12 6659 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a  =  b  /\  c  =  d )  ->  ( a F c )  =  ( b F d ) )
6765, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  (
a F c )  =  ( b F d ) )
6867exp32 631 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  ->  ( -.  d  <  c  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  ->  (
a F c )  =  ( b F d ) ) ) )
69 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  =  ( b F d )  ->  ( [,] `  w )  =  ( [,] `  (
b F d ) ) )
7069sseq2d 3633 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( b F d )  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  w )  <->  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )
71 eqeq2 2633 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( b F d )  ->  (
( a F c )  =  w  <->  ( a F c )  =  ( b F d ) ) )
7270, 71imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( b F d )  ->  (
( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w )  <->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  ->  ( a F c )  =  ( b F d ) ) ) )
7372imbi2d 330 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( b F d )  ->  (
( -.  d  < 
c  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) )  <->  ( -.  d  <  c  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  ->  (
a F c )  =  ( b F d ) ) ) ) )
7468, 73syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  ->  ( w  =  ( b F d )  ->  ( -.  d  <  c  -> 
( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) ) )
7574anassrs 680 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  d  e.  NN0 )  /\  b  e.  ZZ )  ->  (
w  =  ( b F d )  -> 
( -.  d  < 
c  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) ) )
7675rexlimdva 3031 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  d  e.  NN0 )  ->  ( E. b  e.  ZZ  w  =  ( b F d )  -> 
( -.  d  < 
c  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) ) )
7776a2d 29 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  d  e.  NN0 )  ->  (
( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  ( E. b  e.  ZZ  w  =  ( b F d )  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) ) )
7877impd 447 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  d  e.  NN0 )  ->  (
( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) )  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
7978rexlimdva 3031 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  ( E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) )  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
8057, 79syld 47 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  -> 
( a F c )  =  w ) ) )
8180ralimdva 2962 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  ->  ( A. w  e.  A  A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  A. w  e.  A  ( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) )
8247, 81syl5bi 232 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  ->  ( A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  A. w  e.  A  ( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) )
8382imp 445 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  ->  A. w  e.  A  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) )
8483an32s 846 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  ->  A. w  e.  A  ( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) )
85 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a F c )  ->  ( [,] `  z )  =  ( [,] `  (
a F c ) ) )
8685sseq1d 3632 . . . . . . . . . . . . . 14  |-  ( z  =  ( a F c )  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  ( a F c ) )  C_  ( [,] `  w ) ) )
87 eqeq1 2626 . . . . . . . . . . . . . 14  |-  ( z  =  ( a F c )  ->  (
z  =  w  <->  ( a F c )  =  w ) )
8886, 87imbi12d 334 . . . . . . . . . . . . 13  |-  ( z  =  ( a F c )  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
8988ralbidv 2986 . . . . . . . . . . . 12  |-  ( z  =  ( a F c )  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
9084, 89syl5ibrcom 237 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  -> 
( z  =  ( a F c )  ->  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) )
9190anassrs 680 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  z  e.  A
)  /\  a  e.  ZZ )  ->  ( z  =  ( a F c )  ->  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) )
9291rexlimdva 3031 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  z  e.  A
)  ->  ( E. a  e.  ZZ  z  =  ( a F c )  ->  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) )
9392reximdva 3017 . . . . . . . 8  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) )
9493ex 450 . . . . . . 7  |-  ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  -> 
( A. d  e. 
NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9543, 94syl5bi 232 . . . . . 6  |-  ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  -> 
( A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9695com23 86 . . . . 5  |-  ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  -> 
( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9796expimpd 629 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  (
( c  e.  NN0  /\ 
E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c ) )  ->  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9834, 97syl5bi 232 . . 3  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  (
c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  ->  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  < 
c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9998rexlimdv 3030 . 2  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  ( E. c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) )
10030, 99mpd 15 1  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   <.cop 4183   class class class wbr 4653    We wwe 5072    X. cxp 5112   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    / cdiv 10684   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   [,]cicc 12178   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233
This theorem is referenced by:  dyadmbllem  23367
  Copyright terms: Public domain W3C validator