MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc2 Structured version   Visualization version   Unicode version

Theorem ellimc2 23641
Description: Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f  |-  ( ph  ->  F : A --> CC )
limccl.a  |-  ( ph  ->  A  C_  CC )
limccl.b  |-  ( ph  ->  B  e.  CC )
ellimc2.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
ellimc2  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) ) )
Distinct variable groups:    w, u, A    u, B, w    ph, u, w    u, C, w    u, F, w    u, K, w

Proof of Theorem ellimc2
Dummy variables  z 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23639 . . . 4  |-  ( F lim
CC  B )  C_  CC
21sseli 3599 . . 3  |-  ( C  e.  ( F lim CC  B )  ->  C  e.  CC )
32pm4.71ri 665 . 2  |-  ( C  e.  ( F lim CC  B )  <->  ( C  e.  CC  /\  C  e.  ( F lim CC  B
) ) )
4 eqid 2622 . . . . . 6  |-  ( Kt  ( A  u.  { B } ) )  =  ( Kt  ( A  u.  { B } ) )
5 ellimc2.k . . . . . 6  |-  K  =  ( TopOpen ` fld )
6 eqid 2622 . . . . . 6  |-  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  =  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
7 limccl.f . . . . . 6  |-  ( ph  ->  F : A --> CC )
8 limccl.a . . . . . 6  |-  ( ph  ->  A  C_  CC )
9 limccl.b . . . . . 6  |-  ( ph  ->  B  e.  CC )
104, 5, 6, 7, 8, 9ellimc 23637 . . . . 5  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) ) )
1110adantr 481 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( C  e.  ( F lim CC  B )  <->  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) ) )
125cnfldtopon 22586 . . . . . . 7  |-  K  e.  (TopOn `  CC )
139snssd 4340 . . . . . . . 8  |-  ( ph  ->  { B }  C_  CC )
148, 13unssd 3789 . . . . . . 7  |-  ( ph  ->  ( A  u.  { B } )  C_  CC )
15 resttopon 20965 . . . . . . 7  |-  ( ( K  e.  (TopOn `  CC )  /\  ( A  u.  { B } )  C_  CC )  ->  ( Kt  ( A  u.  { B }
) )  e.  (TopOn `  ( A  u.  { B } ) ) )
1612, 14, 15sylancr 695 . . . . . 6  |-  ( ph  ->  ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) ) )
1716adantr 481 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) ) )
1812a1i 11 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  K  e.  (TopOn `  CC )
)
19 ssun2 3777 . . . . . . 7  |-  { B }  C_  ( A  u.  { B } )
20 snssg 4327 . . . . . . . 8  |-  ( B  e.  CC  ->  ( B  e.  ( A  u.  { B } )  <->  { B }  C_  ( A  u.  { B } ) ) )
219, 20syl 17 . . . . . . 7  |-  ( ph  ->  ( B  e.  ( A  u.  { B } )  <->  { B }  C_  ( A  u.  { B } ) ) )
2219, 21mpbiri 248 . . . . . 6  |-  ( ph  ->  B  e.  ( A  u.  { B }
) )
2322adantr 481 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  B  e.  ( A  u.  { B } ) )
24 elun 3753 . . . . . . . 8  |-  ( z  e.  ( A  u.  { B } )  <->  ( z  e.  A  \/  z  e.  { B } ) )
25 velsn 4193 . . . . . . . . 9  |-  ( z  e.  { B }  <->  z  =  B )
2625orbi2i 541 . . . . . . . 8  |-  ( ( z  e.  A  \/  z  e.  { B } )  <->  ( z  e.  A  \/  z  =  B ) )
2724, 26bitri 264 . . . . . . 7  |-  ( z  e.  ( A  u.  { B } )  <->  ( z  e.  A  \/  z  =  B ) )
28 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( z  e.  A  \/  z  =  B
) )  /\  z  =  B )  ->  C  e.  CC )
29 pm5.61 749 . . . . . . . . . 10  |-  ( ( ( z  e.  A  \/  z  =  B
)  /\  -.  z  =  B )  <->  ( z  e.  A  /\  -.  z  =  B ) )
307ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
3130ad2ant2r 783 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
z  e.  A  /\  -.  z  =  B
) )  ->  ( F `  z )  e.  CC )
3229, 31sylan2b 492 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
( z  e.  A  \/  z  =  B
)  /\  -.  z  =  B ) )  -> 
( F `  z
)  e.  CC )
3332anassrs 680 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( z  e.  A  \/  z  =  B
) )  /\  -.  z  =  B )  ->  ( F `  z
)  e.  CC )
3428, 33ifclda 4120 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
z  e.  A  \/  z  =  B )
)  ->  if (
z  =  B ,  C ,  ( F `  z ) )  e.  CC )
3527, 34sylan2b 492 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  z  e.  ( A  u.  { B } ) )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  e.  CC )
3635, 6fmptd 6385 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC )
37 iscnp 21041 . . . . . 6  |-  ( ( ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) )  /\  K  e.  (TopOn `  CC )  /\  B  e.  ( A  u.  { B } ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
)  <->  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC  /\  A. u  e.  K  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) ) ) )
3837baibd 948 . . . . 5  |-  ( ( ( ( Kt  ( A  u.  { B }
) )  e.  (TopOn `  ( A  u.  { B } ) )  /\  K  e.  (TopOn `  CC )  /\  B  e.  ( A  u.  { B } ) )  /\  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC )  ->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
)  <->  A. u  e.  K  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) ) ) )
3917, 18, 23, 36, 38syl31anc 1329 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
)  <->  A. u  e.  K  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) ) ) )
40 iftrue 4092 . . . . . . . . . . 11  |-  ( z  =  B  ->  if ( z  =  B ,  C ,  ( F `  z ) )  =  C )
4140, 6fvmptg 6280 . . . . . . . . . 10  |-  ( ( B  e.  ( A  u.  { B }
)  /\  C  e.  CC )  ->  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  =  C )
4222, 41sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  =  C )
4342eleq1d 2686 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  <->  C  e.  u
) )
4443imbi1d 331 . . . . . . 7  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
)  <->  ( C  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) ) )
4544adantr 481 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K )  ->  (
( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) )  <->  ( C  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) ) )
465cnfldtop 22587 . . . . . . . . . . 11  |-  K  e. 
Top
47 cnex 10017 . . . . . . . . . . . . . 14  |-  CC  e.  _V
4847ssex 4802 . . . . . . . . . . . . 13  |-  ( ( A  u.  { B } )  C_  CC  ->  ( A  u.  { B } )  e.  _V )
4914, 48syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  u.  { B } )  e.  _V )
5049ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( A  u.  { B } )  e.  _V )
51 restval 16087 . . . . . . . . . . 11  |-  ( ( K  e.  Top  /\  ( A  u.  { B } )  e.  _V )  ->  ( Kt  ( A  u.  { B }
) )  =  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) )
5246, 50, 51sylancr 695 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( Kt  ( A  u.  { B } ) )  =  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) )
5352rexeqdv 3145 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. v  e.  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) )
54 vex 3203 . . . . . . . . . . . 12  |-  w  e. 
_V
5554inex1 4799 . . . . . . . . . . 11  |-  ( w  i^i  ( A  u.  { B } ) )  e.  _V
5655rgenw 2924 . . . . . . . . . 10  |-  A. w  e.  K  ( w  i^i  ( A  u.  { B } ) )  e. 
_V
57 eqid 2622 . . . . . . . . . . 11  |-  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) )  =  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) )
58 eleq2 2690 . . . . . . . . . . . 12  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( B  e.  v  <-> 
B  e.  ( w  i^i  ( A  u.  { B } ) ) ) )
59 imaeq2 5462 . . . . . . . . . . . . 13  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  =  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) )
6059sseq1d 3632 . . . . . . . . . . . 12  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u  <->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u ) )
6158, 60anbi12d 747 . . . . . . . . . . 11  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u ) ) )
6257, 61rexrnmpt 6369 . . . . . . . . . 10  |-  ( A. w  e.  K  (
w  i^i  ( A  u.  { B } ) )  e.  _V  ->  ( E. v  e.  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )  <->  E. w  e.  K  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " (
w  i^i  ( A  u.  { B } ) ) )  C_  u
) ) )
6356, 62mp1i 13 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. v  e.  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. w  e.  K  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u ) ) )
6422ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  B  e.  ( A  u.  { B } ) )
65 elin 3796 . . . . . . . . . . . . 13  |-  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  <->  ( B  e.  w  /\  B  e.  ( A  u.  { B } ) ) )
6665rbaib 947 . . . . . . . . . . . 12  |-  ( B  e.  ( A  u.  { B } )  -> 
( B  e.  ( w  i^i  ( A  u.  { B }
) )  <->  B  e.  w ) )
6764, 66syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  <->  B  e.  w ) )
68 simpllr 799 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  C  e.  CC )
69 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( F `
 z )  e. 
_V
70 ifexg 4157 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  CC  /\  ( F `  z )  e.  _V )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V )
7168, 69, 70sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V )
7271ralrimivw 2967 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V )
73 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  =  ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )
7473fnmpt 6020 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V  ->  ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  Fn  ( w  i^i  ( A  u.  { B } ) ) )
7573fmpt 6381 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( w  i^i  ( A  u.  { B }
) ) --> u )
76 df-f 5892 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) ) : ( w  i^i  ( A  u.  { B } ) ) --> u  <-> 
( ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  Fn  (
w  i^i  ( A  u.  { B } ) )  /\  ran  (
z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  C_  u ) )
7775, 76bitri 264 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( (
z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  Fn  ( w  i^i  ( A  u.  { B } ) )  /\  ran  ( z  e.  ( w  i^i  ( A  u.  { B }
) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) 
C_  u ) )
7877baib 944 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  Fn  ( w  i^i  ( A  u.  { B } ) )  -> 
( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  C_  u
) )
7972, 74, 783syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( A. z  e.  (
w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  C_  u
) )
80 simplrr 801 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  C  e.  u )
81 inss2 3834 . . . . . . . . . . . . . . . . . . 19  |-  ( w  i^i  { B }
)  C_  { B }
8281sseli 3599 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( w  i^i 
{ B } )  ->  z  e.  { B } )
8325, 40sylbi 207 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  { B }  ->  if ( z  =  B ,  C , 
( F `  z
) )  =  C )
8483eleq1d 2686 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  { B }  ->  ( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  C  e.  u
) )
8582, 84syl 17 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( w  i^i 
{ B } )  ->  ( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  C  e.  u
) )
8680, 85syl5ibrcom 237 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
z  e.  ( w  i^i  { B }
)  ->  if (
z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
8786ralrimiv 2965 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  A. z  e.  ( w  i^i  { B } ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u )
88 undif1 4043 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  \  { B } )  u.  { B } )  =  ( A  u.  { B } )
8988ineq2i 3811 . . . . . . . . . . . . . . . . . . 19  |-  ( w  i^i  ( ( A 
\  { B }
)  u.  { B } ) )  =  ( w  i^i  ( A  u.  { B } ) )
90 indi 3873 . . . . . . . . . . . . . . . . . . 19  |-  ( w  i^i  ( ( A 
\  { B }
)  u.  { B } ) )  =  ( ( w  i^i  ( A  \  { B } ) )  u.  ( w  i^i  { B } ) )
9189, 90eqtr3i 2646 . . . . . . . . . . . . . . . . . 18  |-  ( w  i^i  ( A  u.  { B } ) )  =  ( ( w  i^i  ( A  \  { B } ) )  u.  ( w  i^i 
{ B } ) )
9291raleqi 3142 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( ( w  i^i  ( A  \  { B } ) )  u.  ( w  i^i  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u )
93 ralunb 3794 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  ( (
w  i^i  ( A  \  { B } ) )  u.  ( w  i^i  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( A. z  e.  ( w  i^i  ( A  \  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  /\  A. z  e.  ( w  i^i  { B } ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9492, 93bitri 264 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( A. z  e.  ( w  i^i  ( A  \  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  /\  A. z  e.  ( w  i^i  { B }
) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9594rbaib 947 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  ( w  i^i  { B } ) if ( z  =  B ,  C , 
( F `  z
) )  e.  u  ->  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9687, 95syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( A. z  e.  (
w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( w  i^i  ( A 
\  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9779, 96bitr3d 270 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( ran  ( z  e.  ( w  i^i  ( A  u.  { B }
) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) 
C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
98 inss2 3834 . . . . . . . . . . . . . . . 16  |-  ( w  i^i  ( A  \  { B } ) ) 
C_  ( A  \  { B } )
9998sseli 3599 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( w  i^i  ( A  \  { B } ) )  -> 
z  e.  ( A 
\  { B }
) )
100 eldifsni 4320 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( A  \  { B } )  -> 
z  =/=  B )
101 ifnefalse 4098 . . . . . . . . . . . . . . . . 17  |-  ( z  =/=  B  ->  if ( z  =  B ,  C ,  ( F `  z ) )  =  ( F `
 z ) )
102100, 101syl 17 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( A  \  { B } )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  =  ( F `
 z ) )
103102eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( A  \  { B } )  -> 
( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( F `  z )  e.  u
) )
10499, 103syl 17 . . . . . . . . . . . . . 14  |-  ( z  e.  ( w  i^i  ( A  \  { B } ) )  -> 
( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( F `  z )  e.  u
) )
105104ralbiia 2979 . . . . . . . . . . . . 13  |-  ( A. z  e.  ( w  i^i  ( A  \  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) ( F `
 z )  e.  u )
10697, 105syl6bb 276 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( ran  ( z  e.  ( w  i^i  ( A  u.  { B }
) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) 
C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) ( F `
 z )  e.  u ) )
107 df-ima 5127 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) )  =  ran  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )
108 inss2 3834 . . . . . . . . . . . . . . . 16  |-  ( w  i^i  ( A  u.  { B } ) ) 
C_  ( A  u.  { B } )
109 resmpt 5449 . . . . . . . . . . . . . . . 16  |-  ( ( w  i^i  ( A  u.  { B }
) )  C_  ( A  u.  { B } )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )  =  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
110108, 109mp1i 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )  =  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
111110rneqd 5353 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ran  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )  =  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
112107, 111syl5eq 2668 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) )  =  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
113112sseq1d 3632 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u  <->  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  C_  u
) )
1147ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  F : A --> CC )
115 ffun 6048 . . . . . . . . . . . . . 14  |-  ( F : A --> CC  ->  Fun 
F )
116114, 115syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  Fun  F )
117 difss 3737 . . . . . . . . . . . . . . 15  |-  ( A 
\  { B }
)  C_  A
11898, 117sstri 3612 . . . . . . . . . . . . . 14  |-  ( w  i^i  ( A  \  { B } ) ) 
C_  A
119 fdm 6051 . . . . . . . . . . . . . . 15  |-  ( F : A --> CC  ->  dom 
F  =  A )
120114, 119syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  dom  F  =  A )
121118, 120syl5sseqr 3654 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
w  i^i  ( A  \  { B } ) )  C_  dom  F )
122 funimass4 6247 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  (
w  i^i  ( A  \  { B } ) )  C_  dom  F )  ->  ( ( F
" ( w  i^i  ( A  \  { B } ) ) ) 
C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) ( F `
 z )  e.  u ) )
123116, 121, 122syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B } ) ) ( F `  z
)  e.  u ) )
124106, 113, 1233bitr4d 300 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u  <->  ( F " ( w  i^i  ( A  \  { B }
) ) )  C_  u ) )
12567, 124anbi12d 747 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( B  e.  ( w  i^i  ( A  u.  { B }
) )  /\  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u )  <->  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
126125rexbidva 3049 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. w  e.  K  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u )  <->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
12753, 63, 1263bitrd 294 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
128127anassrs 680 . . . . . . 7  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K
)  /\  C  e.  u )  ->  ( E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
129128pm5.74da 723 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K )  ->  (
( C  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) )  <->  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
13045, 129bitrd 268 . . . . 5  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K )  ->  (
( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) )  <->  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
131130ralbidva 2985 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. u  e.  K  (
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
)  <->  A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) )
13211, 39, 1313bitrd 294 . . 3  |-  ( (
ph  /\  C  e.  CC )  ->  ( C  e.  ( F lim CC  B )  <->  A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
133132pm5.32da 673 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  C  e.  ( F lim CC  B
) )  <->  ( C  e.  CC  /\  A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) ) )
1343, 133syl5bb 272 1  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   ifcif 4086   {csn 4177    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715    CnP ccnp 21029   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  limcnlp  23642  ellimc3  23643  limcflf  23645  limcresi  23649  limciun  23658  lhop1lem  23776  limccog  39852
  Copyright terms: Public domain W3C validator