Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limccog Structured version   Visualization version   Unicode version

Theorem limccog 39852
Description: Limit of the composition of two functions. If the limit of 
F at  A is  B and the limit of  G at  B is  C, then the limit of  G  o.  F at  A is  C. With respect to limcco 23657 and limccnp 23655, here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limccog.1  |-  ( ph  ->  ran  F  C_  ( dom  G  \  { B } ) )
limccog.2  |-  ( ph  ->  B  e.  ( F lim
CC  A ) )
limccog.3  |-  ( ph  ->  C  e.  ( G lim
CC  B ) )
Assertion
Ref Expression
limccog  |-  ( ph  ->  C  e.  ( ( G  o.  F ) lim
CC  A ) )

Proof of Theorem limccog
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23639 . . 3  |-  ( G lim
CC  B )  C_  CC
2 limccog.3 . . 3  |-  ( ph  ->  C  e.  ( G lim
CC  B ) )
31, 2sseldi 3601 . 2  |-  ( ph  ->  C  e.  CC )
4 limcrcl 23638 . . . . . . . . . . . 12  |-  ( C  e.  ( G lim CC  B )  ->  ( G : dom  G --> CC  /\  dom  G  C_  CC  /\  B  e.  CC ) )
52, 4syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( G : dom  G --> CC  /\  dom  G  C_  CC  /\  B  e.  CC ) )
65simp1d 1073 . . . . . . . . . 10  |-  ( ph  ->  G : dom  G --> CC )
75simp2d 1074 . . . . . . . . . 10  |-  ( ph  ->  dom  G  C_  CC )
85simp3d 1075 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
9 eqid 2622 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
106, 7, 8, 9ellimc2 23641 . . . . . . . . 9  |-  ( ph  ->  ( C  e.  ( G lim CC  B )  <-> 
( C  e.  CC  /\ 
A. u  e.  (
TopOpen ` fld ) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( G
" ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u )
) ) ) )
112, 10mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( C  e.  CC  /\ 
A. u  e.  (
TopOpen ` fld ) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( G
" ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u )
) ) )
1211simprd 479 . . . . . . 7  |-  ( ph  ->  A. u  e.  (
TopOpen ` fld ) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( G
" ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u )
) )
1312r19.21bi 2932 . . . . . 6  |-  ( (
ph  /\  u  e.  ( TopOpen ` fld ) )  ->  ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld )
( B  e.  v  /\  ( G "
( v  i^i  ( dom  G  \  { B } ) ) ) 
C_  u ) ) )
1413imp 445 . . . . 5  |-  ( ( ( ph  /\  u  e.  ( TopOpen ` fld ) )  /\  C  e.  u )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( G
" ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u )
)
15 simp1ll 1124 . . . . . . . 8  |-  ( ( ( ( ph  /\  u  e.  ( TopOpen ` fld )
)  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  ->  ph )
16 simp2 1062 . . . . . . . 8  |-  ( ( ( ( ph  /\  u  e.  ( TopOpen ` fld )
)  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  ->  v  e.  ( TopOpen ` fld ) )
17 simp3l 1089 . . . . . . . 8  |-  ( ( ( ( ph  /\  u  e.  ( TopOpen ` fld )
)  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  ->  B  e.  v )
18 limccog.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ( F lim
CC  A ) )
19 limcrcl 23638 . . . . . . . . . . . . . . 15  |-  ( B  e.  ( F lim CC  A )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  A  e.  CC ) )
2018, 19syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  A  e.  CC ) )
2120simp1d 1073 . . . . . . . . . . . . 13  |-  ( ph  ->  F : dom  F --> CC )
2220simp2d 1074 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  C_  CC )
2320simp3d 1075 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  CC )
2421, 22, 23, 9ellimc2 23641 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  e.  ( F lim CC  A )  <-> 
( B  e.  CC  /\ 
A. v  e.  (
TopOpen ` fld ) ( B  e.  v  ->  E. w  e.  ( TopOpen ` fld ) ( A  e.  w  /\  ( F
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )
) ) ) )
2518, 24mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  ( B  e.  CC  /\ 
A. v  e.  (
TopOpen ` fld ) ( B  e.  v  ->  E. w  e.  ( TopOpen ` fld ) ( A  e.  w  /\  ( F
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )
) ) )
2625simprd 479 . . . . . . . . . 10  |-  ( ph  ->  A. v  e.  (
TopOpen ` fld ) ( B  e.  v  ->  E. w  e.  ( TopOpen ` fld ) ( A  e.  w  /\  ( F
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )
) )
2726r19.21bi 2932 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( TopOpen ` fld ) )  ->  ( B  e.  v  ->  E. w  e.  ( TopOpen ` fld )
( A  e.  w  /\  ( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  v ) ) )
2827imp 445 . . . . . . . 8  |-  ( ( ( ph  /\  v  e.  ( TopOpen ` fld ) )  /\  B  e.  v )  ->  E. w  e.  ( TopOpen ` fld ) ( A  e.  w  /\  ( F
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )
)
2915, 16, 17, 28syl21anc 1325 . . . . . . 7  |-  ( ( ( ( ph  /\  u  e.  ( TopOpen ` fld )
)  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  ->  E. w  e.  ( TopOpen ` fld ) ( A  e.  w  /\  ( F
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )
)
30 imaco 5640 . . . . . . . . . . 11  |-  ( ( G  o.  F )
" ( w  i^i  ( dom  F  \  { A } ) ) )  =  ( G
" ( F "
( w  i^i  ( dom  F  \  { A } ) ) ) )
3115ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  u  e.  ( TopOpen ` fld ) )  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  /\  w  e.  ( TopOpen ` fld ) )  /\  ( F " ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )  ->  ph )
32 simpl3r 1117 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  u  e.  ( TopOpen ` fld )
)  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  /\  w  e.  ( TopOpen ` fld ) )  ->  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u )
3332adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  u  e.  ( TopOpen ` fld ) )  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  /\  w  e.  ( TopOpen ` fld ) )  /\  ( F " ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )  ->  ( G " (
v  i^i  ( dom  G 
\  { B }
) ) )  C_  u )
34 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  u  e.  ( TopOpen ` fld ) )  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  /\  w  e.  ( TopOpen ` fld ) )  /\  ( F " ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )  ->  ( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  v )
35 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( F " ( w  i^i  ( dom  F  \  { A } ) ) ) 
C_  v )  -> 
( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  v )
36 imassrn 5477 . . . . . . . . . . . . . . . . . 18  |-  ( F
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  ran  F
37 limccog.1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ran  F  C_  ( dom  G  \  { B } ) )
3836, 37syl5ss 3614 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  ( dom  G  \  { B } ) )
3938adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( F " ( w  i^i  ( dom  F  \  { A } ) ) ) 
C_  v )  -> 
( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  ( dom  G  \  { B } ) )
4035, 39ssind 3837 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( F " ( w  i^i  ( dom  F  \  { A } ) ) ) 
C_  v )  -> 
( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  ( v  i^i  ( dom  G  \  { B } ) ) )
41 imass2 5501 . . . . . . . . . . . . . . 15  |-  ( ( F " ( w  i^i  ( dom  F  \  { A } ) ) )  C_  (
v  i^i  ( dom  G 
\  { B }
) )  ->  ( G " ( F "
( w  i^i  ( dom  F  \  { A } ) ) ) )  C_  ( G " ( v  i^i  ( dom  G  \  { B } ) ) ) )
4240, 41syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( F " ( w  i^i  ( dom  F  \  { A } ) ) ) 
C_  v )  -> 
( G " ( F " ( w  i^i  ( dom  F  \  { A } ) ) ) )  C_  ( G " ( v  i^i  ( dom  G  \  { B } ) ) ) )
4342adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u )  /\  ( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  v )  ->  ( G " ( F "
( w  i^i  ( dom  F  \  { A } ) ) ) )  C_  ( G " ( v  i^i  ( dom  G  \  { B } ) ) ) )
44 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u )  /\  ( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  v )  ->  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u )
4543, 44sstrd 3613 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u )  /\  ( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  v )  ->  ( G " ( F "
( w  i^i  ( dom  F  \  { A } ) ) ) )  C_  u )
4631, 33, 34, 45syl21anc 1325 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  u  e.  ( TopOpen ` fld ) )  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  /\  w  e.  ( TopOpen ` fld ) )  /\  ( F " ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )  ->  ( G " ( F " ( w  i^i  ( dom  F  \  { A } ) ) ) )  C_  u
)
4730, 46syl5eqss 3649 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  u  e.  ( TopOpen ` fld ) )  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  /\  w  e.  ( TopOpen ` fld ) )  /\  ( F " ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )  ->  ( ( G  o.  F ) " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  u )
4847ex 450 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  u  e.  ( TopOpen ` fld )
)  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  /\  w  e.  ( TopOpen ` fld ) )  ->  (
( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  v  ->  ( ( G  o.  F ) "
( w  i^i  ( dom  F  \  { A } ) ) ) 
C_  u ) )
4948anim2d 589 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  u  e.  ( TopOpen ` fld )
)  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  /\  w  e.  ( TopOpen ` fld ) )  ->  (
( A  e.  w  /\  ( F " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  v )  ->  ( A  e.  w  /\  ( ( G  o.  F ) " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  u ) ) )
5049reximdva 3017 . . . . . . 7  |-  ( ( ( ( ph  /\  u  e.  ( TopOpen ` fld )
)  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  ->  ( E. w  e.  ( TopOpen
` fld
) ( A  e.  w  /\  ( F
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  v )  ->  E. w  e.  (
TopOpen ` fld ) ( A  e.  w  /\  ( ( G  o.  F )
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  u )
) )
5129, 50mpd 15 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  ( TopOpen ` fld )
)  /\  C  e.  u )  /\  v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( G " ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u
) )  ->  E. w  e.  ( TopOpen ` fld ) ( A  e.  w  /\  ( ( G  o.  F )
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  u )
)
5251rexlimdv3a 3033 . . . . 5  |-  ( ( ( ph  /\  u  e.  ( TopOpen ` fld ) )  /\  C  e.  u )  ->  ( E. v  e.  ( TopOpen
` fld
) ( B  e.  v  /\  ( G
" ( v  i^i  ( dom  G  \  { B } ) ) )  C_  u )  ->  E. w  e.  (
TopOpen ` fld ) ( A  e.  w  /\  ( ( G  o.  F )
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  u )
) )
5314, 52mpd 15 . . . 4  |-  ( ( ( ph  /\  u  e.  ( TopOpen ` fld ) )  /\  C  e.  u )  ->  E. w  e.  ( TopOpen ` fld ) ( A  e.  w  /\  ( ( G  o.  F )
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  u )
)
5453ex 450 . . 3  |-  ( (
ph  /\  u  e.  ( TopOpen ` fld ) )  ->  ( C  e.  u  ->  E. w  e.  ( TopOpen ` fld )
( A  e.  w  /\  ( ( G  o.  F ) " (
w  i^i  ( dom  F 
\  { A }
) ) )  C_  u ) ) )
5554ralrimiva 2966 . 2  |-  ( ph  ->  A. u  e.  (
TopOpen ` fld ) ( C  e.  u  ->  E. w  e.  ( TopOpen ` fld ) ( A  e.  w  /\  ( ( G  o.  F )
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  u )
) )
56 ffun 6048 . . . . . . 7  |-  ( F : dom  F --> CC  ->  Fun 
F )
5721, 56syl 17 . . . . . 6  |-  ( ph  ->  Fun  F )
58 fdmrn 6064 . . . . . 6  |-  ( Fun 
F  <->  F : dom  F --> ran  F )
5957, 58sylib 208 . . . . 5  |-  ( ph  ->  F : dom  F --> ran  F )
6037difss2d 3740 . . . . 5  |-  ( ph  ->  ran  F  C_  dom  G )
6159, 60fssd 6057 . . . 4  |-  ( ph  ->  F : dom  F --> dom  G )
62 fco 6058 . . . 4  |-  ( ( G : dom  G --> CC  /\  F : dom  F --> dom  G )  -> 
( G  o.  F
) : dom  F --> CC )
636, 61, 62syl2anc 693 . . 3  |-  ( ph  ->  ( G  o.  F
) : dom  F --> CC )
6463, 22, 23, 9ellimc2 23641 . 2  |-  ( ph  ->  ( C  e.  ( ( G  o.  F
) lim CC  A )  <->  ( C  e.  CC  /\  A. u  e.  ( TopOpen ` fld )
( C  e.  u  ->  E. w  e.  (
TopOpen ` fld ) ( A  e.  w  /\  ( ( G  o.  F )
" ( w  i^i  ( dom  F  \  { A } ) ) )  C_  u )
) ) ) )
653, 55, 64mpbir2and 957 1  |-  ( ph  ->  C  e.  ( ( G  o.  F ) lim
CC  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   A.wral 2912   E.wrex 2913    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   TopOpenctopn 16082  ℂfldccnfld 19746   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  dirkercncflem2  40321  fourierdlem53  40376  fourierdlem93  40416  fourierdlem111  40434
  Copyright terms: Public domain W3C validator