Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac2 Structured version   Visualization version   Unicode version

Theorem fmtnofac2 41481
Description: Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 41482: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtnofac2  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N ) )  ->  E. k  e.  NN0  M  =  ( ( k  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) )
Distinct variable groups:    k, M    k, N

Proof of Theorem fmtnofac2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . . . . . 6  |-  ( x  =  1  ->  (
x  ||  (FermatNo `  N
)  <->  1  ||  (FermatNo `  N ) ) )
21anbi2d 740 . . . . 5  |-  ( x  =  1  ->  (
( N  e.  (
ZZ>= `  2 )  /\  x  ||  (FermatNo `  N
) )  <->  ( N  e.  ( ZZ>= `  2 )  /\  1  ||  (FermatNo `  N
) ) ) )
3 eqeq1 2626 . . . . . 6  |-  ( x  =  1  ->  (
x  =  ( ( k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  1  =  ( ( k  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) ) )
43rexbidv 3052 . . . . 5  |-  ( x  =  1  ->  ( E. k  e.  NN0  x  =  ( (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  E. k  e.  NN0  1  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) )
52, 4imbi12d 334 . . . 4  |-  ( x  =  1  ->  (
( ( N  e.  ( ZZ>= `  2 )  /\  x  ||  (FermatNo `  N
) )  ->  E. k  e.  NN0  x  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) )  <->  ( ( N  e.  ( ZZ>= `  2
)  /\  1  ||  (FermatNo `  N ) )  ->  E. k  e.  NN0  1  =  ( (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 ) ) ) )
6 breq1 4656 . . . . . 6  |-  ( x  =  y  ->  (
x  ||  (FermatNo `  N
)  <->  y  ||  (FermatNo `  N ) ) )
76anbi2d 740 . . . . 5  |-  ( x  =  y  ->  (
( N  e.  (
ZZ>= `  2 )  /\  x  ||  (FermatNo `  N
) )  <->  ( N  e.  ( ZZ>= `  2 )  /\  y  ||  (FermatNo `  N
) ) ) )
8 eqeq1 2626 . . . . . 6  |-  ( x  =  y  ->  (
x  =  ( ( k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  y  =  ( ( k  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) ) )
98rexbidv 3052 . . . . 5  |-  ( x  =  y  ->  ( E. k  e.  NN0  x  =  ( (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  E. k  e.  NN0  y  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) )
107, 9imbi12d 334 . . . 4  |-  ( x  =  y  ->  (
( ( N  e.  ( ZZ>= `  2 )  /\  x  ||  (FermatNo `  N
) )  ->  E. k  e.  NN0  x  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) )  <->  ( ( N  e.  ( ZZ>= `  2
)  /\  y  ||  (FermatNo `  N ) )  ->  E. k  e.  NN0  y  =  ( (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 ) ) ) )
11 breq1 4656 . . . . . 6  |-  ( x  =  z  ->  (
x  ||  (FermatNo `  N
)  <->  z  ||  (FermatNo `  N ) ) )
1211anbi2d 740 . . . . 5  |-  ( x  =  z  ->  (
( N  e.  (
ZZ>= `  2 )  /\  x  ||  (FermatNo `  N
) )  <->  ( N  e.  ( ZZ>= `  2 )  /\  z  ||  (FermatNo `  N
) ) ) )
13 eqeq1 2626 . . . . . 6  |-  ( x  =  z  ->  (
x  =  ( ( k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  z  =  ( ( k  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) ) )
1413rexbidv 3052 . . . . 5  |-  ( x  =  z  ->  ( E. k  e.  NN0  x  =  ( (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  E. k  e.  NN0  z  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) )
1512, 14imbi12d 334 . . . 4  |-  ( x  =  z  ->  (
( ( N  e.  ( ZZ>= `  2 )  /\  x  ||  (FermatNo `  N
) )  ->  E. k  e.  NN0  x  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) )  <->  ( ( N  e.  ( ZZ>= `  2
)  /\  z  ||  (FermatNo `  N ) )  ->  E. k  e.  NN0  z  =  ( (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 ) ) ) )
16 breq1 4656 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  (
x  ||  (FermatNo `  N
)  <->  ( y  x.  z )  ||  (FermatNo `  N ) ) )
1716anbi2d 740 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  (
( N  e.  (
ZZ>= `  2 )  /\  x  ||  (FermatNo `  N
) )  <->  ( N  e.  ( ZZ>= `  2 )  /\  ( y  x.  z
)  ||  (FermatNo `  N
) ) ) )
18 eqeq1 2626 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  (
x  =  ( ( k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  ( y  x.  z )  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) )
1918rexbidv 3052 . . . . 5  |-  ( x  =  ( y  x.  z )  ->  ( E. k  e.  NN0  x  =  ( (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  E. k  e.  NN0  ( y  x.  z )  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) )
2017, 19imbi12d 334 . . . 4  |-  ( x  =  ( y  x.  z )  ->  (
( ( N  e.  ( ZZ>= `  2 )  /\  x  ||  (FermatNo `  N
) )  ->  E. k  e.  NN0  x  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) )  <->  ( ( N  e.  ( ZZ>= `  2
)  /\  ( y  x.  z )  ||  (FermatNo `  N ) )  ->  E. k  e.  NN0  ( y  x.  z
)  =  ( ( k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 ) ) ) )
21 breq1 4656 . . . . . 6  |-  ( x  =  M  ->  (
x  ||  (FermatNo `  N
)  <->  M  ||  (FermatNo `  N
) ) )
2221anbi2d 740 . . . . 5  |-  ( x  =  M  ->  (
( N  e.  (
ZZ>= `  2 )  /\  x  ||  (FermatNo `  N
) )  <->  ( N  e.  ( ZZ>= `  2 )  /\  M  ||  (FermatNo `  N
) ) ) )
23 eqeq1 2626 . . . . . 6  |-  ( x  =  M  ->  (
x  =  ( ( k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  M  =  ( ( k  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) ) )
2423rexbidv 3052 . . . . 5  |-  ( x  =  M  ->  ( E. k  e.  NN0  x  =  ( (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  E. k  e.  NN0  M  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) )
2522, 24imbi12d 334 . . . 4  |-  ( x  =  M  ->  (
( ( N  e.  ( ZZ>= `  2 )  /\  x  ||  (FermatNo `  N
) )  ->  E. k  e.  NN0  x  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) )  <->  ( ( N  e.  ( ZZ>= `  2
)  /\  M  ||  (FermatNo `  N ) )  ->  E. k  e.  NN0  M  =  ( ( k  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) ) ) )
26 0nn0 11307 . . . . . . 7  |-  0  e.  NN0
2726a1i 11 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  0  e.  NN0 )
28 oveq1 6657 . . . . . . . . 9  |-  ( k  =  0  ->  (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  =  ( 0  x.  ( 2 ^ ( N  +  2 ) ) ) )
2928oveq1d 6665 . . . . . . . 8  |-  ( k  =  0  ->  (
( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 )  =  ( ( 0  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) )
3029eqeq2d 2632 . . . . . . 7  |-  ( k  =  0  ->  (
1  =  ( ( k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  <->  1  =  ( ( 0  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) ) )
3130adantl 482 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  k  =  0 )  -> 
( 1  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 )  <->  1  =  ( ( 0  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 ) ) )
32 2nn0 11309 . . . . . . . . . . . 12  |-  2  e.  NN0
3332a1i 11 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  e.  NN0 )
34 eluzge2nn0 11727 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN0 )
3534, 33nn0addcld 11355 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  +  2 )  e. 
NN0 )
3633, 35nn0expcld 13031 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 2 ^ ( N  + 
2 ) )  e. 
NN0 )
3736nn0cnd 11353 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 2 ^ ( N  + 
2 ) )  e.  CC )
3837mul02d 10234 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  x.  ( 2 ^ ( N  +  2 ) ) )  =  0 )
3938oveq1d 6665 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
0  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 )  =  ( 0  +  1 ) )
40 0p1e1 11132 . . . . . . 7  |-  ( 0  +  1 )  =  1
4139, 40syl6req 2673 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  =  ( ( 0  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) )
4227, 31, 41rspcedvd 3317 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. k  e.  NN0  1  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) )
4342adantr 481 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  1  ||  (FermatNo `  N )
)  ->  E. k  e.  NN0  1  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) )
44 simpl 473 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  ||  (FermatNo `  N )
)  ->  N  e.  ( ZZ>= `  2 )
)
4544adantl 482 . . . . . 6  |-  ( ( x  e.  Prime  /\  ( N  e.  ( ZZ>= ` 
2 )  /\  x  ||  (FermatNo `  N )
) )  ->  N  e.  ( ZZ>= `  2 )
)
46 simpl 473 . . . . . 6  |-  ( ( x  e.  Prime  /\  ( N  e.  ( ZZ>= ` 
2 )  /\  x  ||  (FermatNo `  N )
) )  ->  x  e.  Prime )
47 simprr 796 . . . . . 6  |-  ( ( x  e.  Prime  /\  ( N  e.  ( ZZ>= ` 
2 )  /\  x  ||  (FermatNo `  N )
) )  ->  x  ||  (FermatNo `  N )
)
48 nnssnn0 11295 . . . . . . 7  |-  NN  C_  NN0
49 fmtnoprmfac2 41479 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  Prime  /\  x  ||  (FermatNo `  N ) )  ->  E. k  e.  NN  x  =  ( (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 ) )
50 ssrexv 3667 . . . . . . 7  |-  ( NN  C_  NN0  ->  ( E. k  e.  NN  x  =  ( ( k  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 )  ->  E. k  e.  NN0  x  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) )
5148, 49, 50mpsyl 68 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  Prime  /\  x  ||  (FermatNo `  N ) )  ->  E. k  e.  NN0  x  =  ( (
k  x.  ( 2 ^ ( N  + 
2 ) ) )  +  1 ) )
5245, 46, 47, 51syl3anc 1326 . . . . 5  |-  ( ( x  e.  Prime  /\  ( N  e.  ( ZZ>= ` 
2 )  /\  x  ||  (FermatNo `  N )
) )  ->  E. k  e.  NN0  x  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) )
5352ex 450 . . . 4  |-  ( x  e.  Prime  ->  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  ||  (FermatNo `  N )
)  ->  E. k  e.  NN0  x  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) )
54 fmtnofac2lem 41480 . . . 4  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( ( N  e.  ( ZZ>= `  2 )  /\  y  ||  (FermatNo `  N
) )  ->  E. k  e.  NN0  y  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) )  /\  ( ( N  e.  ( ZZ>= ` 
2 )  /\  z  ||  (FermatNo `  N )
)  ->  E. k  e.  NN0  z  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) )  ->  (
( N  e.  (
ZZ>= `  2 )  /\  ( y  x.  z
)  ||  (FermatNo `  N
) )  ->  E. k  e.  NN0  ( y  x.  z )  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) ) )
555, 10, 15, 20, 25, 43, 53, 54prmind 15399 . . 3  |-  ( M  e.  NN  ->  (
( N  e.  (
ZZ>= `  2 )  /\  M  ||  (FermatNo `  N
) )  ->  E. k  e.  NN0  M  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) )
5655expd 452 . 2  |-  ( M  e.  NN  ->  ( N  e.  ( ZZ>= ` 
2 )  ->  ( M  ||  (FermatNo `  N
)  ->  E. k  e.  NN0  M  =  ( ( k  x.  (
2 ^ ( N  +  2 ) ) )  +  1 ) ) ) )
57563imp21 1277 1  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  M  ||  (FermatNo `  N ) )  ->  E. k  e.  NN0  M  =  ( ( k  x.  ( 2 ^ ( N  +  2 ) ) )  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   2c2 11070   NN0cn0 11292   ZZ>=cuz 11687   ^cexp 12860    || cdvds 14983   Primecprime 15385  FermatNocfmtno 41439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-gcd 15217  df-prm 15386  df-odz 15470  df-phi 15471  df-pc 15542  df-lgs 25020  df-fmtno 41440
This theorem is referenced by:  fmtnofac1  41482
  Copyright terms: Public domain W3C validator