MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodmul Structured version   Visualization version   Unicode version

Theorem fprodmul 14690
Description: The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodmul.1  |-  ( ph  ->  A  e.  Fin )
fprodmul.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodmul.3  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
Assertion
Ref Expression
fprodmul  |-  ( ph  ->  prod_ k  e.  A  ( B  x.  C
)  =  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fprodmul
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1t1e1 11175 . . . . 5  |-  ( 1  x.  1 )  =  1
2 prod0 14673 . . . . . 6  |-  prod_ k  e.  (/)  B  =  1
3 prod0 14673 . . . . . 6  |-  prod_ k  e.  (/)  C  =  1
42, 3oveq12i 6662 . . . . 5  |-  ( prod_
k  e.  (/)  B  x.  prod_ k  e.  (/)  C )  =  ( 1  x.  1 )
5 prod0 14673 . . . . 5  |-  prod_ k  e.  (/)  ( B  x.  C )  =  1
61, 4, 53eqtr4ri 2655 . . . 4  |-  prod_ k  e.  (/)  ( B  x.  C )  =  (
prod_ k  e.  (/)  B  x.  prod_ k  e.  (/)  C )
7 prodeq1 14639 . . . 4  |-  ( A  =  (/)  ->  prod_ k  e.  A  ( B  x.  C )  =  prod_ k  e.  (/)  ( B  x.  C ) )
8 prodeq1 14639 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  B  =  prod_ k  e.  (/)  B )
9 prodeq1 14639 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  C  =  prod_ k  e.  (/)  C )
108, 9oveq12d 6668 . . . 4  |-  ( A  =  (/)  ->  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C )  =  (
prod_ k  e.  (/)  B  x.  prod_ k  e.  (/)  C ) )
116, 7, 103eqtr4a 2682 . . 3  |-  ( A  =  (/)  ->  prod_ k  e.  A  ( B  x.  C )  =  (
prod_ k  e.  A  B  x.  prod_ k  e.  A  C ) )
1211a1i 11 . 2  |-  ( ph  ->  ( A  =  (/)  ->  prod_ k  e.  A  ( B  x.  C
)  =  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C ) ) )
13 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
14 nnuz 11723 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1513, 14syl6eleq 2711 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
16 fprodmul.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
17 eqid 2622 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
1816, 17fmptd 6385 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
1918adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
20 f1of 6137 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
2120ad2antll 765 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
22 fco 6058 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
2319, 21, 22syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
2423ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  e.  CC )
25 fprodmul.3 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
26 eqid 2622 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
2725, 26fmptd 6385 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  C ) : A --> CC )
2827adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  C ) : A --> CC )
29 fco 6058 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  C ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  C )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
3028, 21, 29syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  C )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
3130ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  e.  CC )
3221ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( f `  n
)  e.  A )
33 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
3416, 25mulcld 10060 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  ( B  x.  C )  e.  CC )
35 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( k  e.  A  |->  ( B  x.  C ) )  =  ( k  e.  A  |->  ( B  x.  C ) )
3635fvmpt2 6291 . . . . . . . . . . . . . 14  |-  ( ( k  e.  A  /\  ( B  x.  C
)  e.  CC )  ->  ( ( k  e.  A  |->  ( B  x.  C ) ) `
 k )  =  ( B  x.  C
) )
3733, 34, 36syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( B  x.  C
) ) `  k
)  =  ( B  x.  C ) )
3817fvmpt2 6291 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  k )  =  B )
3933, 16, 38syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  B ) `  k
)  =  B )
4026fvmpt2 6291 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  C  e.  CC )  ->  ( ( k  e.  A  |->  C ) `  k )  =  C )
4133, 25, 40syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  C ) `  k
)  =  C )
4239, 41oveq12d 6668 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( ( k  e.  A  |->  B ) `  k )  x.  (
( k  e.  A  |->  C ) `  k
) )  =  ( B  x.  C ) )
4337, 42eqtr4d 2659 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( B  x.  C
) ) `  k
)  =  ( ( ( k  e.  A  |->  B ) `  k
)  x.  ( ( k  e.  A  |->  C ) `  k ) ) )
4443ralrimiva 2966 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  ( ( k  e.  A  |->  ( B  x.  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  x.  (
( k  e.  A  |->  C ) `  k
) ) )
4544ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  A. k  e.  A  ( ( k  e.  A  |->  ( B  x.  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  x.  (
( k  e.  A  |->  C ) `  k
) ) )
46 nffvmpt1 6199 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e.  A  |->  ( B  x.  C ) ) `  ( f `  n
) )
47 nffvmpt1 6199 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  B ) `  ( f `  n
) )
48 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ k  x.
49 nffvmpt1 6199 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  C ) `  ( f `  n
) )
5047, 48, 49nfov 6676 . . . . . . . . . . . 12  |-  F/_ k
( ( ( k  e.  A  |->  B ) `
 ( f `  n ) )  x.  ( ( k  e.  A  |->  C ) `  ( f `  n
) ) )
5146, 50nfeq 2776 . . . . . . . . . . 11  |-  F/ k ( ( k  e.  A  |->  ( B  x.  C ) ) `  ( f `  n
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  x.  (
( k  e.  A  |->  C ) `  (
f `  n )
) )
52 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  x.  C
) ) `  k
)  =  ( ( k  e.  A  |->  ( B  x.  C ) ) `  ( f `
 n ) ) )
53 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  k
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
54 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  k
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
5553, 54oveq12d 6668 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  B ) `  k )  x.  (
( k  e.  A  |->  C ) `  k
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  x.  (
( k  e.  A  |->  C ) `  (
f `  n )
) ) )
5652, 55eqeq12d 2637 . . . . . . . . . . 11  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  ( B  x.  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  x.  (
( k  e.  A  |->  C ) `  k
) )  <->  ( (
k  e.  A  |->  ( B  x.  C ) ) `  ( f `
 n ) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `
 n ) )  x.  ( ( k  e.  A  |->  C ) `
 ( f `  n ) ) ) ) )
5751, 56rspc 3303 . . . . . . . . . 10  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  ( ( k  e.  A  |->  ( B  x.  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  x.  (
( k  e.  A  |->  C ) `  k
) )  ->  (
( k  e.  A  |->  ( B  x.  C
) ) `  (
f `  n )
)  =  ( ( ( k  e.  A  |->  B ) `  (
f `  n )
)  x.  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) ) ) )
5832, 45, 57sylc 65 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  ( B  x.  C ) ) `  ( f `  n
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  x.  (
( k  e.  A  |->  C ) `  (
f `  n )
) ) )
59 fvco3 6275 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( B  x.  C
) ) `  (
f `  n )
) )
6021, 59sylan 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( B  x.  C
) ) `  (
f `  n )
) )
61 fvco3 6275 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
6221, 61sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
63 fvco3 6275 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
6421, 63sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
6562, 64oveq12d 6668 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( ( k  e.  A  |->  B )  o.  f ) `
 n )  x.  ( ( ( k  e.  A  |->  C )  o.  f ) `  n ) )  =  ( ( ( k  e.  A  |->  B ) `
 ( f `  n ) )  x.  ( ( k  e.  A  |->  C ) `  ( f `  n
) ) ) )
6658, 60, 653eqtr4d 2666 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  n )  =  ( ( ( ( k  e.  A  |->  B )  o.  f ) `  n )  x.  (
( ( k  e.  A  |->  C )  o.  f ) `  n
) ) )
6715, 24, 31, 66prodfmul 14622 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (  seq 1 (  x.  , 
( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) ) `  ( # `  A ) )  =  ( (  seq 1 (  x.  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) )  x.  (  seq 1 (  x.  , 
( ( k  e.  A  |->  C )  o.  f ) ) `  ( # `  A ) ) ) )
68 fveq2 6191 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  x.  C
) ) `  m
)  =  ( ( k  e.  A  |->  ( B  x.  C ) ) `  ( f `
 n ) ) )
69 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
7034, 35fmptd 6385 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  ( B  x.  C
) ) : A --> CC )
7170adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  ( B  x.  C ) ) : A --> CC )
7271ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  ( B  x.  C ) ) `  m )  e.  CC )
7368, 13, 69, 72, 60fprod 14671 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  ( B  x.  C ) ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  ( B  x.  C
) )  o.  f
) ) `  ( # `
 A ) ) )
74 fveq2 6191 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
7519ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
7674, 13, 69, 75, 62fprod 14671 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
77 fveq2 6191 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  m
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
7828ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  C ) `  m )  e.  CC )
7977, 13, 69, 78, 64fprod 14671 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  (  seq 1
(  x.  ,  ( ( k  e.  A  |->  C )  o.  f
) ) `  ( # `
 A ) ) )
8076, 79oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  x.  prod_ m  e.  A  ( (
k  e.  A  |->  C ) `  m ) )  =  ( (  seq 1 (  x.  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) )  x.  (  seq 1 (  x.  , 
( ( k  e.  A  |->  C )  o.  f ) ) `  ( # `  A ) ) ) )
8167, 73, 803eqtr4d 2666 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  ( B  x.  C ) ) `  m )  =  ( prod_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  x.  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) ) )
82 prodfc 14675 . . . . . 6  |-  prod_ m  e.  A  ( (
k  e.  A  |->  ( B  x.  C ) ) `  m )  =  prod_ k  e.  A  ( B  x.  C
)
83 prodfc 14675 . . . . . . 7  |-  prod_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  prod_ k  e.  A  B
84 prodfc 14675 . . . . . . 7  |-  prod_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  prod_ k  e.  A  C
8583, 84oveq12i 6662 . . . . . 6  |-  ( prod_
m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  x.  prod_ m  e.  A  ( (
k  e.  A  |->  C ) `  m ) )  =  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C )
8681, 82, 853eqtr3g 2679 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  ( B  x.  C )  =  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  C ) )
8786expr 643 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  prod_ k  e.  A  ( B  x.  C
)  =  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C ) ) )
8887exlimdv 1861 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  prod_ k  e.  A  ( B  x.  C )  =  (
prod_ k  e.  A  B  x.  prod_ k  e.  A  C ) ) )
8988expimpd 629 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  prod_ k  e.  A  ( B  x.  C )  =  (
prod_ k  e.  A  B  x.  prod_ k  e.  A  C ) ) )
90 fprodmul.1 . . 3  |-  ( ph  ->  A  e.  Fin )
91 fz1f1o 14441 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
9290, 91syl 17 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
9312, 89, 92mpjaod 396 1  |-  ( ph  ->  prod_ k  e.  A  ( B  x.  C
)  =  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   (/)c0 3915    |-> cmpt 4729    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   1c1 9937    x. cmul 9941   NNcn 11020   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  fprodsplit  14696  risefallfac  14755  gausslemma2dlem5  25096  gausslemma2dlem6  25097  bcprod  31624
  Copyright terms: Public domain W3C validator