MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim3 Structured version   Visualization version   Unicode version

Theorem geolim3 24094
Description: Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
geolim3.a  |-  ( ph  ->  A  e.  ZZ )
geolim3.b1  |-  ( ph  ->  B  e.  CC )
geolim3.b2  |-  ( ph  ->  ( abs `  B
)  <  1 )
geolim3.c  |-  ( ph  ->  C  e.  CC )
geolim3.f  |-  F  =  ( k  e.  (
ZZ>= `  A )  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )
Assertion
Ref Expression
geolim3  |-  ( ph  ->  seq A (  +  ,  F )  ~~>  ( C  /  ( 1  -  B ) ) )
Distinct variable groups:    ph, k    A, k    B, k    C, k
Allowed substitution hint:    F( k)

Proof of Theorem geolim3
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 geolim3.f . . 3  |-  F  =  ( k  e.  (
ZZ>= `  A )  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )
2 seqeq3 12806 . . 3  |-  ( F  =  ( k  e.  ( ZZ>= `  A )  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  ->  seq A (  +  ,  F )  =  seq A (  +  ,  ( k  e.  ( ZZ>= `  A
)  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) ) ) )
31, 2ax-mp 5 . 2  |-  seq A
(  +  ,  F
)  =  seq A
(  +  ,  ( k  e.  ( ZZ>= `  A )  |->  ( C  x.  ( B ^
( k  -  A
) ) ) ) )
4 nn0uz 11722 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
5 0zd 11389 . . . . 5  |-  ( ph  ->  0  e.  ZZ )
6 geolim3.c . . . . 5  |-  ( ph  ->  C  e.  CC )
7 geolim3.b1 . . . . . 6  |-  ( ph  ->  B  e.  CC )
8 geolim3.b2 . . . . . 6  |-  ( ph  ->  ( abs `  B
)  <  1 )
9 oveq2 6658 . . . . . . . 8  |-  ( k  =  a  ->  ( B ^ k )  =  ( B ^ a
) )
10 eqid 2622 . . . . . . . 8  |-  ( k  e.  NN0  |->  ( B ^ k ) )  =  ( k  e. 
NN0  |->  ( B ^
k ) )
11 ovex 6678 . . . . . . . 8  |-  ( B ^ a )  e. 
_V
129, 10, 11fvmpt 6282 . . . . . . 7  |-  ( a  e.  NN0  ->  ( ( k  e.  NN0  |->  ( B ^ k ) ) `
 a )  =  ( B ^ a
) )
1312adantl 482 . . . . . 6  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( (
k  e.  NN0  |->  ( B ^ k ) ) `
 a )  =  ( B ^ a
) )
147, 8, 13geolim 14601 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  ( k  e. 
NN0  |->  ( B ^
k ) ) )  ~~>  ( 1  /  (
1  -  B ) ) )
15 expcl 12878 . . . . . . 7  |-  ( ( B  e.  CC  /\  a  e.  NN0 )  -> 
( B ^ a
)  e.  CC )
167, 15sylan 488 . . . . . 6  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( B ^ a )  e.  CC )
1713, 16eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( (
k  e.  NN0  |->  ( B ^ k ) ) `
 a )  e.  CC )
18 geolim3.a . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
1918zcnd 11483 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
20 nn0cn 11302 . . . . . . 7  |-  ( a  e.  NN0  ->  a  e.  CC )
21 fvex 6201 . . . . . . . . 9  |-  ( ZZ>= `  A )  e.  _V
2221mptex 6486 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  A
)  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  e.  _V
2322shftval4 13817 . . . . . . 7  |-  ( ( A  e.  CC  /\  a  e.  CC )  ->  ( ( ( k  e.  ( ZZ>= `  A
)  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  shift  -u A
) `  a )  =  ( ( k  e.  ( ZZ>= `  A
)  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) ) `  ( A  +  a )
) )
2419, 20, 23syl2an 494 . . . . . 6  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( (
( k  e.  (
ZZ>= `  A )  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  shift  -u A ) `
 a )  =  ( ( k  e.  ( ZZ>= `  A )  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) ) `  ( A  +  a ) ) )
25 uzid 11702 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  A  e.  ( ZZ>= `  A )
)
2618, 25syl 17 . . . . . . . 8  |-  ( ph  ->  A  e.  ( ZZ>= `  A ) )
27 uzaddcl 11744 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= `  A )  /\  a  e.  NN0 )  ->  ( A  +  a )  e.  ( ZZ>= `  A )
)
2826, 27sylan 488 . . . . . . 7  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( A  +  a )  e.  ( ZZ>= `  A )
)
29 oveq1 6657 . . . . . . . . . 10  |-  ( k  =  ( A  +  a )  ->  (
k  -  A )  =  ( ( A  +  a )  -  A ) )
3029oveq2d 6666 . . . . . . . . 9  |-  ( k  =  ( A  +  a )  ->  ( B ^ ( k  -  A ) )  =  ( B ^ (
( A  +  a )  -  A ) ) )
3130oveq2d 6666 . . . . . . . 8  |-  ( k  =  ( A  +  a )  ->  ( C  x.  ( B ^ ( k  -  A ) ) )  =  ( C  x.  ( B ^ ( ( A  +  a )  -  A ) ) ) )
32 eqid 2622 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  A
)  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  =  ( k  e.  ( ZZ>= `  A )  |->  ( C  x.  ( B ^
( k  -  A
) ) ) )
33 ovex 6678 . . . . . . . 8  |-  ( C  x.  ( B ^
( ( A  +  a )  -  A
) ) )  e. 
_V
3431, 32, 33fvmpt 6282 . . . . . . 7  |-  ( ( A  +  a )  e.  ( ZZ>= `  A
)  ->  ( (
k  e.  ( ZZ>= `  A )  |->  ( C  x.  ( B ^
( k  -  A
) ) ) ) `
 ( A  +  a ) )  =  ( C  x.  ( B ^ ( ( A  +  a )  -  A ) ) ) )
3528, 34syl 17 . . . . . 6  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( (
k  e.  ( ZZ>= `  A )  |->  ( C  x.  ( B ^
( k  -  A
) ) ) ) `
 ( A  +  a ) )  =  ( C  x.  ( B ^ ( ( A  +  a )  -  A ) ) ) )
36 pncan2 10288 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  a  e.  CC )  ->  ( ( A  +  a )  -  A
)  =  a )
3719, 20, 36syl2an 494 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( ( A  +  a )  -  A )  =  a )
3837oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( B ^ ( ( A  +  a )  -  A ) )  =  ( B ^ a
) )
3938, 13eqtr4d 2659 . . . . . . 7  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( B ^ ( ( A  +  a )  -  A ) )  =  ( ( k  e. 
NN0  |->  ( B ^
k ) ) `  a ) )
4039oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( C  x.  ( B ^ (
( A  +  a )  -  A ) ) )  =  ( C  x.  ( ( k  e.  NN0  |->  ( B ^ k ) ) `
 a ) ) )
4124, 35, 403eqtrd 2660 . . . . 5  |-  ( (
ph  /\  a  e.  NN0 )  ->  ( (
( k  e.  (
ZZ>= `  A )  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  shift  -u A ) `
 a )  =  ( C  x.  (
( k  e.  NN0  |->  ( B ^ k ) ) `  a ) ) )
424, 5, 6, 14, 17, 41isermulc2 14388 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( ( k  e.  ( ZZ>= `  A
)  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  shift  -u A
) )  ~~>  ( C  x.  ( 1  / 
( 1  -  B
) ) ) )
4319negidd 10382 . . . . 5  |-  ( ph  ->  ( A  +  -u A )  =  0 )
4443seqeq1d 12807 . . . 4  |-  ( ph  ->  seq ( A  +  -u A ) (  +  ,  ( ( k  e.  ( ZZ>= `  A
)  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  shift  -u A
) )  =  seq 0 (  +  , 
( ( k  e.  ( ZZ>= `  A )  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  shift  -u A ) ) )
45 ax-1cn 9994 . . . . . 6  |-  1  e.  CC
46 subcl 10280 . . . . . 6  |-  ( ( 1  e.  CC  /\  B  e.  CC )  ->  ( 1  -  B
)  e.  CC )
4745, 7, 46sylancr 695 . . . . 5  |-  ( ph  ->  ( 1  -  B
)  e.  CC )
48 abs1 14037 . . . . . . . . 9  |-  ( abs `  1 )  =  1
4948a1i 11 . . . . . . . 8  |-  ( ph  ->  ( abs `  1
)  =  1 )
507abscld 14175 . . . . . . . . 9  |-  ( ph  ->  ( abs `  B
)  e.  RR )
5150, 8gtned 10172 . . . . . . . 8  |-  ( ph  ->  1  =/=  ( abs `  B ) )
5249, 51eqnetrd 2861 . . . . . . 7  |-  ( ph  ->  ( abs `  1
)  =/=  ( abs `  B ) )
53 fveq2 6191 . . . . . . . 8  |-  ( 1  =  B  ->  ( abs `  1 )  =  ( abs `  B
) )
5453necon3i 2826 . . . . . . 7  |-  ( ( abs `  1 )  =/=  ( abs `  B
)  ->  1  =/=  B )
5552, 54syl 17 . . . . . 6  |-  ( ph  ->  1  =/=  B )
56 subeq0 10307 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  B  e.  CC )  ->  ( ( 1  -  B )  =  0  <->  1  =  B ) )
5745, 7, 56sylancr 695 . . . . . . 7  |-  ( ph  ->  ( ( 1  -  B )  =  0  <->  1  =  B ) )
5857necon3bid 2838 . . . . . 6  |-  ( ph  ->  ( ( 1  -  B )  =/=  0  <->  1  =/=  B ) )
5955, 58mpbird 247 . . . . 5  |-  ( ph  ->  ( 1  -  B
)  =/=  0 )
606, 47, 59divrecd 10804 . . . 4  |-  ( ph  ->  ( C  /  (
1  -  B ) )  =  ( C  x.  ( 1  / 
( 1  -  B
) ) ) )
6142, 44, 603brtr4d 4685 . . 3  |-  ( ph  ->  seq ( A  +  -u A ) (  +  ,  ( ( k  e.  ( ZZ>= `  A
)  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  shift  -u A
) )  ~~>  ( C  /  ( 1  -  B ) ) )
6218znegcld 11484 . . . 4  |-  ( ph  -> 
-u A  e.  ZZ )
6322isershft 14394 . . . 4  |-  ( ( A  e.  ZZ  /\  -u A  e.  ZZ )  ->  (  seq A
(  +  ,  ( k  e.  ( ZZ>= `  A )  |->  ( C  x.  ( B ^
( k  -  A
) ) ) ) )  ~~>  ( C  / 
( 1  -  B
) )  <->  seq ( A  +  -u A ) (  +  ,  ( ( k  e.  (
ZZ>= `  A )  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  shift  -u A ) )  ~~>  ( C  / 
( 1  -  B
) ) ) )
6418, 62, 63syl2anc 693 . . 3  |-  ( ph  ->  (  seq A (  +  ,  ( k  e.  ( ZZ>= `  A
)  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) ) )  ~~>  ( C  /  ( 1  -  B ) )  <->  seq ( A  +  -u A ) (  +  ,  ( ( k  e.  (
ZZ>= `  A )  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) )  shift  -u A ) )  ~~>  ( C  / 
( 1  -  B
) ) ) )
6561, 64mpbird 247 . 2  |-  ( ph  ->  seq A (  +  ,  ( k  e.  ( ZZ>= `  A )  |->  ( C  x.  ( B ^ ( k  -  A ) ) ) ) )  ~~>  ( C  /  ( 1  -  B ) ) )
663, 65syl5eqbr 4688 1  |-  ( ph  ->  seq A (  +  ,  F )  ~~>  ( C  /  ( 1  -  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801   ^cexp 12860    shift cshi 13806   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  aaliou3lem3  24099
  Copyright terms: Public domain W3C validator